欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学近期研究专辑(厦门大学 姜艳霞教授主编)

微接触印刷技术转移Au纳米粒子及氧化石墨烯复合图案及其性质研究

  • 庞文辉 ,
  • 肖孝建 ,
  • 叶梦薇 ,
  • 邓凯超 ,
  • 汤儆
展开
  • 福州大学 化学化工学院,教育部暨福建省食品安全和分析检测重点实验室,福建 福州 350108

收稿日期: 2014-02-08

  修回日期: 2014-04-08

  网络出版日期: 2014-04-13

基金资助

国家自然科学基金项目(No. 21073038,No. 21173048)资助

Fabrication of Pattern of Graphene Oxide and Au Nanoparticles by Microcontanct Printing Technique

  • PANG Wen-Hui ,
  • XIAO Xiao-Jian ,
  • YE Meng-Wei ,
  • DENG Kai-Chao ,
  • TANG Jing
Expand
  • Key Laboratory of Analysis and Detection Technology for Food Safety, Ministry of Education, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, China

Received date: 2014-02-08

  Revised date: 2014-04-08

  Online published: 2014-04-13

摘要

通过改良的“Hummers方法”制得氧化石墨烯,利用聚二甲基硅氧烷(PDMS)弹性印章的微接触印刷技术,以Au膜和氧化石墨烯溶液为“墨水”,通过二次印章转移,分别将Au纳米粒子和氧化石墨烯(Graphene Oxide,GO)转移至修饰了(3-氨基丙基)三乙氧基硅烷(APTES)的ITO基底(APTES/ITO)表面. 利用场发射扫描电子显微镜(FE-SEM)、原子力显微镜(AFM)等表征图案,结果表明转移的AuNPs和GO组成的复合图案均匀,致密性较好. 利用表面电势显微镜(Surface Potential Microscope,SEPM,KFM)测定了各部分的表面电势,以APTES/ITO基底表面为表面电势零点,各部分表面电势大小为:APTES/ITO > GO > Au(0,-11.6,-44.2 mV).

本文引用格式

庞文辉 , 肖孝建 , 叶梦薇 , 邓凯超 , 汤儆 . 微接触印刷技术转移Au纳米粒子及氧化石墨烯复合图案及其性质研究[J]. 电化学, 2014 , 20(5) : 452 -458 . DOI: 10.13208/j.electrochem.131175

Abstract

Graphene oxide (GO) was prepared by modified Hummers method. Using the GO solution as "ink", Au nanoparticles (AuNPs) and GO were transferred to the surface of ITO substrate modified with (3-aminopropyl) triethoxysilane (APTES/ITO) in a sequence. The transferred AuNPs and GO could form a uniform and dense composite pattern which was characterized by FE-SEM and AFM. Moreover, using the APTES/ITO substrate surface potential as zero, the sequences of the surface potential were APTES>GO>Au.

参考文献

[1] Zhou Y, Loh K P. Making patterns on graphene[J]. Advanced Materials, 2010, 22(32): 3615-3620.
[2] Han M Y, ?zyilmaz B, Zhang Y B, et al. Energy band-gap engineering of graphene nanoribbons[J]. Physical Review Letters, 2007, 98(20): 206805.
[3] Zhou Y, Bao Q, Varghese B, et al. Microstructuring of graphene oxide nanosheets using direct laser writing[J]. Advanced Materials, 2010, 22(1): 67-71.
[4] Liang X G, Fu Z L, Chou S Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer[J]. Nano Letters, 2007, 7(12): 3840-3844.
[5] Devadas B, Rajkumar M, Chen S M, et al. Electrochemically reduced graphene oxide/neodymium hexacyanoferrate modified electrodes for the electrochemical detection of paracetamol[J]. International Journal of Electrochemical Science, 2012, 7: 3339-3349.
[6] Liu J Q, Yin Z Y, Cao X H, et al. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes[J]. ACS Nano, 2010, 4(7): 3987-3992.
[7] Robinson J T, Perkins F K, Snow E S, et al. Reduced graphene oxide molecular sensors[J]. Nano Letters, 2008, 8(10): 3137-3140.
[8] Becerril H A, Mao J, Liu Z F, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano, 2008, 2(3): 463-470.
[9] Wang Z J, Zhou X Z, Zhang J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase[J]. The Journal of Physical Chemistry C, 2009, 113(32): 14071-14075.
[10] Tang J(汤儆), Pang W H(庞文辉), Ren H(任禾), et al. Rapid transfer of Au nanoparticles pattern onto ITO substrates using microcontact printing technique[J]. Acta Physico-Chimica Sinica(物理化学学报), 2013, 29(3): 612-618.
[11] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
[12] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814.
[13] Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Journal of the American Chemical Society, 2008, 130(18): 5856-5857.
[14] Qin D, Xia Y N, Whitesides G M. Soft lithography for micro- and nanoscale patterning[J]. Nature Protocols, 2010, 5(3): 491-502.
[15] Tang J(汤儆), Tian X C(田晓春), Zhou F Q(周富庆), et al. Mechanism of Au electrodeposition onto indium tin oxide[J]. Acta Physico-Chimica Sinica(物理化学学报), 2011, 27(3): 641-646.
[16] Eda G, Chhowalla M. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics[J]. Advanced Materials, 2010, 22(22): 2392-2415.
[17] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401.
[18] Zhao X, Zhang Q, Chen D, et al. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules, 2010, 43(5): 2357-2363.
[19] Ambrosi A, Bonanni A, Sofer Z, et al. Electrochemistry at chemically modified graphenes[J]. Chemistry-A European Journal, 2011, 17(38): 10763-10700.
[20] Dreyer D R, Murali S, Zhu Y, et al. Reduction of graphite oxide using alcohols[J]. Journal of Materials Chemistry, 2011, 21(10): 3443-3447.
[21] Park S, An J, JungI, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents[J]. Nano Letters, 2009, 9(4): 1593-1597.
[22] Acres R G, Ellis A V, Alvino J, et al. Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces[J]. The Journal of Physical Chemistry C, 2012, 116(10): 6289-6297.
[23] Ballarin B, Cassani M C, Scavetta E, et al. Self-assembled gold nanoparticles modified ITO electrodes: The monolayer binder molecule effect[J]. Electrochimica Acta, 2008, 53(27): 8034-8044.
[24] Jaafar M, Lo?pez-Poli?n G, Go?mez-Navarro C, et al. Step like surface potential on few layered graphene oxide[J]. Applied Physics Letters, 2012, 101(26): 263109.
[25] Moores B, Simons J, Xu S, et al. AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential[J]. Nanoscale Research Letters, 2011, 6(1): 185.
文章导航

/