欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究快讯

钴氰化钠/氯化钠固体溶液微晶体的电化学制备及其特性

  • 朱益亮 ,
  • 杨德志 ,
  • 苏亚琼 ,
  • 吴德印 ,
  • 田中群 ,
  • 詹东平
展开
  • 厦门大学 固体表面物理化学国家重点实验室,化学化工学院化学系,福建 厦门 361005

收稿日期: 2014-03-20

  修回日期: 2014-03-28

  网络出版日期: 2014-04-05

基金资助

国家自然科学基金项目(Nos. 21327002,91323303,21321062,20973142,21061120456)资助

Microfabrication and Redox Properties of the Single Microcrystal of Na3Co(CN)6/NaCl Solid Solution

  • ZHU Yi-Liang ,
  • YANG De-Zhi ,
  • SU Ya-Qiong ,
  • WU De-Yin ,
  • TIAN Zhong-Qun ,
  • ZHAN Dong-Ping
Expand
  • State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2014-03-20

  Revised date: 2014-03-28

  Online published: 2014-04-05

摘要

钴氰化钠与铁氰化钠结构类似,而其在固/液界面上的电子转移特性却并不显著. 使用扫描电化学显微镜(SECM)构建了fL~pL体积的电化学微体系. 在微体系中溶剂蒸发,电解质则会浓缩结晶. 当电活性物质与支持电解质的晶格参数匹配时,二者可发生共结晶形成固体溶液. 本文采用该方法制得钴氰化钠/氯化钠固体溶液微晶体,结合微加工技术构建了固体电极/固体溶液界面,该钴氰化钠在固体溶液中即有很好的电子转移特性.

本文引用格式

朱益亮 , 杨德志 , 苏亚琼 , 吴德印 , 田中群 , 詹东平 . 钴氰化钠/氯化钠固体溶液微晶体的电化学制备及其特性[J]. 电化学, 2014 , 20(3) : 197 -200 . DOI: 10.13208/j.electrochem.140320

Abstract

Although the molecular structures are similar to each other, the redox property of Co(CN)63- at solid/liquid interface is not so good as Fe(CN)63-. In this paper, scanning electrochemical microscopy (SECM) was adopted to construct an electrochemical microsystem with a volume of fL~pL, in which a micropipette with micrometer-sized orifice was employed as the scanning tip. Due to the evaporation of water, the NaCl electrolyte is concentrated to form a microcrystal. During the crystallization, the redox species Co(CN)63- replaced the sites of NaCl65- unit due to their matching lattice parameters, i.e., the solid solution. Single Na3Co(CN)6/NaCl microcrystal was assembled in-situ between a pair of gold microelectrodes on a microchip to construct the solid/solid interface, which was found to have good voltammetric behavior.

参考文献

[1] Korvink J, Paul O. MEMS: A practical guide of design, analysis, and applications[M]. Heidelberg: Springer, 2010.
[2] Andersson H, ven den Berg A, eds. Lab-on-chips for cellomics: Micro and nanotechnologies for life science[M]. Dordrecht: Springer, 2004.
[3] Feringa B L, Browne W R, eds. Molecular switches[M]. Weinheim:Wiley-vch, 2001,Vol. 42.
[4] Balzani V, Credi A, Venturi M. Molecular devices and machines[M]. Weinheim, Germany: Wiley-Vch, 2004.
[5] Zhan D P, Yang D Z, Zhu Y L, et al. Fabrication and characterization of nanostructured ZnO thin film microdevices by scanning electrochemical cell microscopy[J]. Chemical Communications, 2012, 48(93): 11449-11451.
[6 ] Kulesza P J, Cox J A. Solid-state voltammetry—Analytical prospects[J]. Electroanalysis, 1998, 10(2): 73-80.
[7] Kulesza P J, Galus Z. Electrode processes and charge transport in bulk redox conducting inorganic solids[J]. Electrochimica Acta, 1997, 42(5): 867-872.
[8] Yang D Z, Han L H, Yang Y, et al. Solid-state redox solutions: Microfabrication and electrochemistry[J]. Angewandte Chemie International Edition, 2011, 50: 8679-82.
[9] Chen J, Xu L, Li W, et al. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications[J]. Advanced Materials, 2005, 17(5): 582-586.
[10] Zhan D P, Yang D Z, Yin B S, et al. Electrochemical behaviors of single microcrystals of iron hexacyanides/NaCl solid solution[J]. Analytical chemistry, 2012, 84(21): 9276-9281.
[11] Fisher L R, Israelachvili J N. Experimental studies on the applicability of the Kelvin equation to highly curved concave menisci[J]. Journal of Colloid and Interface Science, 1981, 80(2): 528-541.
[12] Fisher L R, Israelachvili J N. Direct experimental verification of the Kelvin equation for capillary condensation[J]. Nature, 1979, 277: 548-549.
[13] Carter D J, Ogden M I, Rohl A L. Incorporation of cyano transition metal complexes in KCl crystals—Experimental and computational studies[J]. Australian Journal of Chemistry, 2003, 56(7): 675-678.
[14] Sushko P V, Shluger A L, Baetzold R C, et al. Embedded cluster calculations of metal complex impurity defects: Properties of the iron cyanide in NaCl[J]. Journal of Physics: Condensed Matter, 2000, 12(38): 8257.
[15] Itaya K, Uchida I, Neff V D. Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues[J]. Accounts of Chemical Research, 1986, 19(6): 162-168.
[16] Bard A J, Faulker L R. Electrochemical methods fundamentals and methods[M]. 2nd ed. New York: John Wiley & Sons, 2001.
文章导航

/