欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

掺铝富锂材料Li1.2Mn0.543Co0.078Ni0.155Al0.030O2电极的电化学性能

  • 金晓茜 ,
  • 李益孝 ,
  • 杨勇 ,
  • 王周成
展开
  • 厦门大学化学化工学院,福建 厦门 361005

收稿日期: 2013-05-16

  修回日期: 2013-06-19

  网络出版日期: 2014-04-17

基金资助

国家重点基础研究发展计划项目(No. 2007CB935603)资助

Effect of Al-Doping in Li-Rich Material Li1.2Mn0.543Co0.078Ni0.155Al0.030O2 for Lithium-Ion Batteries

  • JIN Xiao-Qian ,
  • LI Yi-Xiao ,
  • YANG Yong ,
  • WANG Zhou-Cheng
Expand
  • College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2013-05-16

  Revised date: 2013-06-19

  Online published: 2014-04-17

摘要

本文合成了掺铝富锂材料Li1.2Mn0.543Co0.078Ni0.155Al0.030O2,并使用扫描电镜(SEM)、粉末X射线衍射(XRD)、电感耦合等离子体原子发射光谱(ICP-AES)和拉曼散射光谱(Raman)等观察表征富锂和掺铝富锂材料. 结果表明,共沉淀法合成掺铝富锂材料,具有R-3m空间群结构,Al元素进入晶格,未单独成相. 电化学性能和非现场XRD测试结果表明,4%(by mole)掺铝富锂电极100周期循环容量保持率83.7%,Al元素掺杂有利于容量的释放,增强了电极富锂材料的结构稳定性,提高了循环性能.

本文引用格式

金晓茜 , 李益孝 , 杨勇 , 王周成 . 掺铝富锂材料Li1.2Mn0.543Co0.078Ni0.155Al0.030O2电极的电化学性能[J]. 电化学, 2014 , 20(2) : 116 -120 . DOI: 10.13208/j.electrochem.130516

Abstract

The Al-doped 0.5Li2MnO3·0.5Li(Mn0.4Co0.2Ni0.4)O2 compounds were successfully synthesized as cathode materials for lithium-ion batteries. The pristine and Al-doped materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and laser Raman spectroscopy. The results indicated that all the prepared materials were indexed as a hexagonal structure with R-3m space group, and Al element had been introduced into lattice. When cycled at 180 mA·g-1 (1 C-rate), the capacity retention of 4% (by mole) Al-doped 0.5Li2MnO3·0.5Li(Mn0.4Co0.2Ni0.4)O2 electrode was as high as 83.7% after 100 cycles. The Al-doped materials could enhance the structural stability of electrodes, which contributes to high stabilized performance of cathode material for lithium ion batteries.

参考文献

[1] Bruce P, áRobert Armstrong A, Gitzendanner R. New intercalation compounds for lithium batteries: Layered LiMnO2[J]. Journal of Materials Chemistry, 1999, 9(1), 193-198.
[2] Thackeray M M, Johnson C S, Vaughey J T, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2005, 15(23): 2257-2267.
[3] Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30): 3112-3125.
[4] Oishi M, Fujimoto T, Takanashi, Y, et al. Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure[J]. Journal of Power Sources, 2013, 222: 45-51.
[5] Yoon W S, Iannopollo S, Grey C P, et al. Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2-x)/3Li(1-2x)/3]O2 NMR studies and first principles calculations[J]. Electrochemical and Solid-State Letters, 2004, 7(7): A167-A171.
[6] Abdel-Ghany A, Zaghib K, Gendron F, et al. Structural, magnetic and electrochemical properties of LiNi0.5Mn0.5O2 as positive electrode for Li-ion batteries[J]. Electrochimica Acta, 2007, 52(12): 4092-4100.
文章导航

/