欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

二茂铁功能化Fe3O4/碳纳米管/壳聚糖复合膜葡萄糖生物传感电极的研究

  • 彭花萍 ,
  • 查代君 ,
  • 黄郑隽 ,
  • 陈伟 ,
  • 刘爱林 ,
  • 林新华
展开
  • 1. 福建医科大学药学院药物分析系,福建 福州 350004;2. 南昌大学高等研究院,江西 南昌 330031

收稿日期: 2012-11-08

  修回日期: 2013-01-25

  网络出版日期: 2014-02-24

基金资助

国家863计划资助项目(No. 2012AA022604)、国家自然科学基金(No. 20975021,No. 21275028)、福建省高校产学研科技重点项目(No. 2010Y4003)、福建省自然科学基金资助项目(No. 2010J06011)和福建医科大学博士启动基金(No. 2011BS005)资助

Design and Development of a Novel Glucose Biosensor Based on the Ferrocene-Functionalized Fe3O4 Nanoparticles/Carbon Nanotubes/Chitosan Nanocomposite Film Modified Electrode

  • PENG Hua-Ping ,
  • CHA Dai-Jun ,
  • HUANG Zheng-Juan ,
  • CHEN Wei ,
  • LIU Ai-Lin ,
  • LIN Xin-Hua
Expand
  • 1. Department of Pharmaceutical Analysis of the Fujian Medical University,Fuzhou 350004,China;2. Institute for Advanced Study of Nanchang University,Nanchang 330031,China

Received date: 2012-11-08

  Revised date: 2013-01-25

  Online published: 2014-02-24

摘要

采用交联法制备了羧基二茂铁功能化Fe3O4纳米粒子(FMC-AFNPs)复合材料,并将该复合纳米材料与多壁碳纳米管(MWNTs)、壳聚糖(CS)及葡萄糖氧化酶(GOD)混合修饰于自制的磁性玻碳基底(MGC)表面,制备了GOD/FMC-AFNPs/MWNTs/CS复合膜生物传感器电极. 实验结果表明,FMC-AFNPs复合材料有效地克服了二茂铁在电极表面的泄漏,且FMC-AFNPs/MWNTs/CS复合膜良好的生物兼容性较大地改善了固定化GOD的生物活性. MWNTs具有良好的导电性和大比表面积,在修饰膜内可作为电子传递“导线”,极大地促进电极的电子传递速率,提高电极的电催化活性和灵敏度. 该电极的葡萄糖检测的线性范围为1.0×10-5 ~ 6.0×10-3 molL-1,检测限为3.2×10-6 mmolL-1(S/N=3),表观米氏常数为5.03×10-3 mmolL-1,且有较好的稳定性和重现性.

本文引用格式

彭花萍 , 查代君 , 黄郑隽 , 陈伟 , 刘爱林 , 林新华 . 二茂铁功能化Fe3O4/碳纳米管/壳聚糖复合膜葡萄糖生物传感电极的研究[J]. 电化学, 2014 , 20(1) : 33 -38 . DOI: 10.13208/j.electrochem.121108

Abstract

A novel platform for the fabrication of glucose biosensor was successfully constructed by entrapping glucose oxidase (GOD) in a ferrocene monocarboxylic acid-aminated Fe3O4 magnetic nanoparticles conjugate (FMC-AFNPs)/chitosan (CS)/multiwall carbon nanotubes (MWNTs) nanocomposite. The formation of FMC-AFNPs could effectively prevent the leakage of ferrocene and retain its electrochemical activity. This GOD/FMC-AFNPs/CS/MWNTs matrix provided a biocompatible microenvironment for retaining the native activity of the immobilized GOD. Moreover, the presence of MWNTs enhanced the charge-transport properties of the composite and facilitated electron transfer between the GOD and the electrode for the electrocatalysis of glucose. Under the optimal conditions the designed biosensor to glucose exhibited a wide and useful linear range of 1.0×10-5 to 6.0×10-3 molL-1 with a low detection limit of 3.2×10-6 molL-1(S/N=3). The value of was 5.03×10-3 molL-1, indicating that the biosensor possesses higher biological affinity to glucose. Furthermore, the biosensor possesses satisfactory stability and good reproducibility.

参考文献

Kandimalla V B, Tripathi V S, Ju H X. A conductive ormosil encapsulated with ferrocene conjugate and multiwalled carbon nanotubes for biosensing application[J]. Biomaterials, 2006, 27(7): 1167-1174.
Chen L, Gorski W. Bioinorganic composites for enzyme electrodes[J]. Analytical Chemistry, 2001, 73(13): 2862-2868.
Pandey P C, Upadhyay S, Tiwari I, et al. A novel ferrocene-encapsulated palladium-linked ormosil-based electrocatalytic biosensor. The role of the reactive functional group[J]. Electroanalysis, 2001, 13(18): 1519-1527.
Tsiafoulis C G, Florou A B, Trikalitis P N, et al. Electrochemical study of ferrocene intercalated vanadium pentoxide xerogel/polyvinyl alcohol composite films: Application in the development of amperometric biosensors[J]. Electrochemistry Communications, 2005, 7(7): 781-788.
Liang R P, Fan L X, Huang D M, et al. A Label-free amperometric immunosensor based on redox-active ferrocene-branched chitosan/multiwalled carbon nanotubes conductive composite and gold nanoparticles[J]. Electroanalysis, 2011, 23(3): 719-727.
Liu X Q, Shi L H, Niu W X, et al. Amperometric glucose biosensor based on single-walled carbon nanohorns[J]. Biosensors and Bioelectronics, 2008, 23(12), 1887-1890.
Hu L Z, Han S, Liu Z Y, et al. A versatile strategy for electrochemical detection of hydrogen peroxide as well as related enzymes and substrates based on selective hydrogen peroxide-mediated boronate deprotection[J]. Electrochemistry Communications, 2011, 13(12): 1536-1538.
Lei J P, Ju H X. Signal amplification using functional nanomaterials for biosensing[J]. Chemical Society Reviews, 2012, 41(6): 2122-2134.
Dumitresscu I, Unwin P R, Macpherson J V. Electrochemistry at carbon nanotubes: Perspectives and issues[J]. Chemical Communications, 2009, 46(45): 6886-6901.
Jacobs C B, Peairs M J, Venton B J. Review: Carbon nanotube based electrochemical sensors for biomolecules[J]. Analytica Chimica Acta, 2010, 662(2): 105-127.
Huang Y, Zhao S L, Liu Y M, et al. An amplified single-walled carbon nanotube-mediated chemiluminescence turn-on sensing platform for ultrasensitive DNA detection[J]. Chemical Communications, 2012, 48(75): 9400-9402.
Cruz J, Kawasaki M, Gorski W. Electrode coatings based on chitosan scaffolds[J]. Analytical Chemistry, 2000, 72(4): 680-686.
Benesch J, Tengvall P. Blood protein adsorption onto chitosan[J]. Biomaterials, 2002, 23(12): 2561-2568.
Liang R P, Fan L. X, Wang R, et al. One-step electrochemically deposited nanocomposite film of CS-Fc/MWNTs/GOD for glucose biosensor application[J]. Electroanalysis, 2009, 21(15): 1685-1691.
Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media[J]. IEEE Transactions on Magnetics, 1981, 17(2): 1247-1248.
Peng H P, Qiu J D, Liang R P. Facile synthesis of Fe3O4@Al2O3 core-shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry[J]. Biosensors and Bioelectronics, 2011, 26(6): 3005-3011.
Yang C Q, Wang, G, Lu Z Y, et al. Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles[J]. Journal of Materials Chemistry, 2005, 15(39): 4252-4257.
Li J, Wang Y B, Qiu J D. Biocomposites of covalently linked glucose oxidase on carbon nanotubes for glucose biosensor[J]. Analytical and Bioanalytical Chemistry, 2005, 383(6) 918-922.
Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer[J]. Analytical Chemistry, 1980, 52(8): 1198-1205.
Qiu J D, Peng H P, Liang R P, et al. Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry[J]. Biosensors and Bioelectronics, 2010, 25(6), 1447-1453.
Wu B Y, Hou S H, Yin F, et al. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode[J]. Biosensors and Bioelectronics, 2007, 22(12): 2854-2860.
文章导航

/