欢迎访问《电化学(中英文)》期刊官方网站,今天是
锂离子电池近期研究专辑 (厦门大学 杨勇教授主编)

钒替代对碳包覆硅酸铁锂复合材料结构的影响(英文)

  • 杨洪 ,
  • 张颖 ,
  • 程璇
展开
  • 1. 厦门大学材料学院,材料科学与工程系,厦门 361005;2. 福建省特种先进材料重点实验室,厦门 361005

收稿日期: 2013-05-16

  修回日期: 2013-07-08

  网络出版日期: 2013-12-23

基金资助

Supported by Fujian Key Laboratory of Advanced Materials, China (No. 2006L2003).

Effect of Vanadium Substitution on Structure of Li2FeSiO4/C Composites

  • YANG Hong ,
  • ZHANG Ying ,
  • CHENG Xuan
Expand
  • 1. Department of Materials Science & Engineering, College of Materials; 2. Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen, Fujian 361005, P.R. China

Received date: 2013-05-16

  Revised date: 2013-07-08

  Online published: 2013-12-23

Supported by

Supported by Fujian Key Laboratory of Advanced Materials, China (No. 2006L2003).

摘要

以廉价的硝酸铁为铁原料,通过溶胶凝胶和固相反应法制得碳包覆硅酸铁锂(Li2FeSiO4/C)正极材料,以偏钒酸铵(NH4VO3)为钒原料,按理论计算量5,10,15,20,25,30和50%制得钒替代Li2FeSiO4/C复合材料(Li2Fe1-xVxSiO4/C). 结果表明,Li2FeSiO4/C(主相P21/n)结晶良好,基本无杂相,而Li2Fe1-xVxSiO4/C(主相P21/n)存在主要杂质偏硅酸锂和钒/铁氧化物. Li2FeSiO4/C和Li2Fe0.95V0.5SiO4/C电极C/16(室温)的首次放电比容量分别达160.9 mAh·g-1和130.8 mAh·g-1. 钒替代量的增加,无定形碳的石墨化程度增强,碳包覆量却减少. 钒替代量直接影响钒/铁氧化物的形成量,导致Li2Fe0.95V0.5SiO4/C电极电化学性能较差.

本文引用格式

杨洪 , 张颖 , 程璇 . 钒替代对碳包覆硅酸铁锂复合材料结构的影响(英文)[J]. 电化学, 2013 , 19(6) : 565 -570 . DOI: 10.13208/j.electrochem.130356

Abstract

The carbon coated lithium iron silicate (Li2FeSiO4/C) composites were prepared using less expansive iron starting material of soluble ferric nitrate through sol-gel process and solid state reaction. The theoretically calculated amounts of 5, 10, 15, 20, 25, 30, and 50% of vanadium (V) were introduced using NH4VO3 to obtain V-substituted Li2FeSiO4/C composites. It was found that the pure Li2FeSiO4/C composite exhibited a good crystallinity with P21/n and nearly no impurities being detected, while the V-substituted Li2FeSiO4/C composites showed major impurities of Li2SiO3 and V3O4/Fe3O4. The discharge capacities of 160.9 mAh·g-1 and 130.8 mAh·g-1 at C/16 were obtained for the pure and 5% V-substituted Li2FeSiO4/C composites, respectively. The degree of graphitization in amorphous carbon was enhanced and the quantities of carbon coated were lowered with the increase of V-substituted amounts. The electrochemical performance of 5% V-substituted Li2FeSiO4/C composite was not improved due to the presences of impurities which were directly linked to the amounts of V substitution.

参考文献

[1] Islam M S, Dominko R, Masquelier C, et al. Silicate cathodes for lithium batteries: Alternatives to phosphates?[J]. Journal of Materials Chemistry, 2011, 21(27): 9811-9818.
[2] Gong Z L, Li Y X, He G N, et al. Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process[J]. Electrochemical and Solid-State Letters, 2008, 11(5): A60-A63.
[3] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Materials, 2002, 1(2): 123-128.
[4] Dominko R, Conte D E, Hanzel D, et al. Impact of synthesis conditions on the structure and performance of Li2FeSiO4[J]. Journal of Power Sources, 2008, 178(2): 842-847.
[5] Zhang S, Deng C, Fu B L, et al. Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2010, 644(2): 150-154.
[6] Deng C, Zhang S, Yang S Y, et al. Synthesis and characterization of Li2Fe0.97M0.03SiO4 (M=Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2011, 196(1): 386-392.
[7] Gong Z L, Li Y X, Yang Y. Synthesis and characterization of Li2MnxFe1-xSiO4 as a cathode material for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2006, 9(12): A542-A544.
[8] Peng C L(彭春丽), Zhang J F(张佳峰), Cao X(曹璇), et al. Synthesis of Li2Fe0.9Mn0.1SiO4/C composites using glucose as carbon source[J]. Journal of Central South University of Technology(中南大学学报(英文版)), 2010, 17(3): 504-508.
[9] Li L M. Effects of roasting temperature and modification on properties of Li2FeSiO4-C cathode-1[J]. Journal of Power Sources, 2009, 189(1): 45-50.
[10] Zhang S, Deng C, Fu B L, et al. Effects of Cr doping on the electrochemical properties of Li2FeSiO4 cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(28): 8482-8489.
[11] Li Y S, Cheng X, Zhang Y. Achieving high capacity by vanadium substitution into Li2FeSiO4[J]. Journal of The Electrochemical Society, 2012, 159(2): A69-A74.
[12] Hao H, Wang J, Liu J, et al. Synthesis, characterization and electrochemical performance of Li2FeSiO4/C cathode materials doped by vanadium at Fe/Si sites for lithium ion batteries[J]. Journal of Power Sources, 2012, 210: 397-401.
[13] Boulineau A, Sirisopanaporn C, Dominko R, et al. Polymorphism and structural defects in Li2FeSiO4[J]. Dalton Transactions, 2010, 39(27): 6310-6316.
[14] Nytén A, Abouimrane A, Armand M, et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material[J]. Electrochemistry Communications, 2005, 7(2): 156-160.
[15] Sirisopanapor C, Boulineau A, Hanzel D, et al. Crystal structure of a new polymorph of Li2FeSiO4[J]. Inorganic Chemistry, 2010, 49(16): 7446-7451.
[16] Feng Y, He T, Alonso-Vante N. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium[J]. Electrochimica Acta, 2009, 54(22): 5252-5256.
[17] Deng C, Zhang S, Gao Y, et al. Regeneration and characterization of air-exposed Li2FeSiO4[J]. Electrochimica Acta, 2011, 56(21): 7327-7333.
[18] Lv D, Wen W, Huang X, et al. A novel Li2FeSiO4/C composite: Synthesis,characterization and high storage capacity[J]. Journal of Materials Chemistry, 2011, 21(26): 9506-9512.
[19] Botto I L, Vassallo M B, Baran E J, et al. IR spectra of VO2 and V2O3[J]. Materials Chemistry and Physics, 1997, 50(3): 267-270.
文章导航

/