欢迎访问《电化学(中英文)》期刊官方网站,今天是
锂离子电池近期研究专辑 (厦门大学 杨勇教授主编)

铝掺杂LiFePO4的表面成份结构及电化学性能研究

  • 尚怀芳 ,
  • 黄伟峰 ,
  • 储旺盛 ,
  • 夏定国 ,
  • 吴自玉
展开
  • 1. 北京工业大学环境与能源工程学院环境电化学实验室,北京 100717;2. 中国科技大学国家同步辐射实验室,合肥 230026;3. 北京大学工学院先进电池材料理论与技术北京市重点实验室,北京 100871

收稿日期: 2013-05-06

  修回日期: 2013-05-24

  网络出版日期: 2013-12-23

基金资助

国家自然科学基金项目(No. 11179001)、北京市自然科学基金项目(No. 20110001)和国家高技术研究发展863计划项目(No. 2011AA11A254,No. 2012AA052201)资助

Surface Composition Structure and Electrochemical Performance of Aluminum Doped LiFePO4

  • SHANG Huai-Fang ,
  • HUANG Wei-Feng ,
  • CHU Wang-Sheng ,
  • XIA Ding-Guo ,
  • WU Zi-Yu
Expand
  • 1. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, P. R. China; 2. NSRL, University of Science and Technology of China, Hefei 230026, P. R. China; 3. Key lab of theory and technology for advanced batteries materials, College of Engineering, Peking University, Beijing 100871, P. R. China

Received date: 2013-05-06

  Revised date: 2013-05-24

  Online published: 2013-12-23

摘要

锂离子电池正极材料掺杂LiFePO4的报道已很多,而涉及掺杂LiFePO4的表面成份及结构的研究仍很少见. 本文采用溶剂热法一步得了表面富Al的LiFePO4正极材料. TEM测试证实LiFePO4的表面形成均匀的无定型包覆层;俄歇电子能谱和软X射线吸收谱共同揭示了其表面的自包覆层为部分Al替代Fe的LiFe1-xAlxPO4. 表面富Al(x=0.02)的LiFePO4显示了较好的电化学倍率性能和低温性能,充放电-10 oC的条件下,电压范围2.2 ~ 4.2 V、0.1C倍率电极的放电比容量为98 mAh·g-1,0.5C倍率放电比容量可达70 mAh·g-1. 这归因于Al的加入改变了材料体相及表面的电子结构,增加了体相电子的传导及表面离子的传导.

本文引用格式

尚怀芳 , 黄伟峰 , 储旺盛 , 夏定国 , 吴自玉 . 铝掺杂LiFePO4的表面成份结构及电化学性能研究[J]. 电化学, 2013 , 19(6) : 558 -564 . DOI: 10.13208/j.electrochem.130354

Abstract

Despite there are many successful reports about the preparation of electrode materials with surface coating for lithium ion batteries, the study in surface self-coating of cathode materials using segregation of doping elements and their electrochemical properties is still very rare. The LiFePO4 particles with rich-Al on the surface were synthesized by one step solvothermal route. TEM results demonstrated that the surface of the obtained LiFePO4 particles was well-covered by the amorphous coating. The soft X-ray absorption spectroscopy (XAS) and Auger electron spectroscopy (AES) component analyses revealed that the amorphous coating was composed of LiFe1-xAlxPO4 by part of Al substitution to Fe. The LiFePO4 material with surface rich-Al showed good electrochemical rate capacity and low temperature performance. This could be attributed to the changes of the bulk and surface electron structures which promote the bulk electron and surface ionic conductivities.

参考文献

[1] Weinstock I B. Recent advances in the US Department of Energy's energy storage technology research and development programs for hybrid electric and electric vehicles[J]. Journal of Power Sources, 2002, 110(2): 471-474.
[2] Vincent C A. Lithium batteries: A 50-year perspective, 1959-2009[J]. Solid State Ionics, 2000, 134(1/2): 159-167.
[3] Nishi Y. Lithium ion secondary batteries; past 10 years and the future[J]. Journal of Power Sources, 2001, 100(1/2): 101-106.
[4] Zhang Y, Wu X B, Feng H, et al. Effect of nanosized Mg0.8Cu0.20O on electrochemical properties of Li/S rechargeable batteries[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1556-1559.
[5] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[6] Striebel K, Shim J, Srinivasan V, et al. Comparison of LiFePO4 from different sources[J]. Journal of the Electrochemical Society, 2005, 152(4): A664-A670.
[7] Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4[J]. Solid State Ionics, 2002, 148(1/2): 45-51.
[8] Dell’Era A, Pasquali M. Comparison between different ways to determine diffusion coefficient and by solving Fick's equation for spherical coordinates[J]. Journal of Solid State Electrochemistry, 2009, 13(6): 849-859.
[9] Yin Y H, Gao M X. High-rate capability of LiFePO4 cathode materials containing Fe2P and trace carbon[J]. Journal of Power Sources, 2012, 199: 256-262.
[10] Doherty C M, Caryso R A. Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries[J]. Chemistry Materials, 2009, 21(13): 2895-2903.
[11] Zou H L, Zhang G H, Shen P K. Intermittent microwave heating synthesized high performance spherical LiFePO4/C for Li-ion batteries[J]. Materials Research Bulletin, 2010, 45(2): 149-152.
[12] Kim D H, Kim J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties[J]. Electrochemical and Solid-State Letters, 2006, 9(9): A439-A442.
[13] Meethong N. Size-dependent lithium miscibility gap in nanoscale Li1-xFePO4[J]. Electrochemical and Solid-State Letters, 2001, 10(5): A174-A178.
[14] Chen Z H, Dahn J R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density[J]. Journal of the Electrochemical Society, 2002, 149(9): A1184-A1189.
[15] Yamada A, Chung S C, Hinokurna K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society, 2001, 148(3): A224-A229.
[16] Ni J F, Morishita M, Kawabe Y, et al. Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid[J]. Journal of Power Sources, 2010, 195(9): 2877-2882.
[17] Choi D, Kumta P N. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries[J]. Journal of Power Sources, 2007, 163(2): 1064-1069.
[18] Konarova M, Taniguchi I. Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries[J]. Journal of Power Sources, 2010, 195(11): 3661-3667.
[19] Zhou W J, He W, Li Z M, et al. Biosynthesis and electrochemical characteristics of LiFePO4/C by microwave processing[J]. Journal of Solid State Electrochemistry, 2009, 13(12): 1819-1823.
[20] Chevrier F, Brochier R, Richter C. Reactivity and magnetism of Fe/In As(100) interfaces[J]. The European Physical Journal B, 2002, 28(3): 305-313.
[21] Zheng S, Hayakawa S, Gohshi Y. An experimental comparison of the total-electron-yield and conversion-electron-yield modes for near-surface characterization using X-ray excitation[J]. Journal of electron spectroscopy and related phenomena, 1997, 87(1): 81-89.
[22] Ankudinov A L, Ravel B, Rehr J J, et al. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure[J]. Physical Review B, 1998, 58(12): 7565-757.
[23] Lee P A, Pendry J B. Theory of extended X-ray absorption fine-structure[J]. Physical Review B, 1975, 11(8): 2795-2811.
[24] Natoli C R, Benfatto M, Brouder C, et al. Multichannel multiple-scattering theory with general potentials[J]. Physical Review B, 1990, 42(4): 1944-1968.
[25] Ou X Q, Pan L, Gu H C, et al. Temperature-dependent crystallinity and morphology of LiFePO4 prepared by hydrothermal synthesis[J]. Journal of Materials Chemistry, 2012, 22(18): 9064-9068.
[26] Azib T, Ammar S, Nowak S. Crystallinity of nano C-LiFePO4 prepared by the polyol process[J]. Journal of Power Sources, 2012, 217: 220-228.
[27] Sun C, Rajasekhara S, Goodenough J B, et al. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode[J]. Journal of the American Chemical Society, 2011, 133(7): 2132-2135.
[28] Laffont L, Delacourt C, Gibot P, et al. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy[J]. Chemistry of Materials, 2006, 18(23): 5520-5529.
[29] Kang B, Ceder G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235): 190-193.
[30] Shang H F, Chu W S, Cheng J, et al. Surface phase composition of nanosized LiFePO4 and their enhanced electrochemical properties[J]. Journal of Materials Chemistry A, 2013, 1(22): 6635-6641.
[31] Abbate M, Pen H, Czyzyk M T, et al. Soft-X-ray absorption-spectroscopy of vanadium-oxides[J]. Journal of Electron Spectroscopy and Related Phenomena, 1993, 62(1/2): 185-195.
[32] Khang H, Michelle D J. First-principles studies of the effects of impurities on the ionic and electronic conduction in LiFePO4[J]. Journal of Power Sources, 2012, 206: 274-281.
[33] Chen H, Wang S Z. Preparation and electrochemical performance of LiFePO4/C composite with carbon core structure[J]. Materials Letters, 2009, 63(20): 1668-1670.
[34] Muxina K, Izumi T. Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties[J]. Powder Technology, 2009, 191(1/2): 111-116.
[35] Liao L X, Zuo P J, Ma Y L, et al. Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries[J]. Electrochemical Acta, 2012, 60: 269-273.
文章导航

/