欢迎访问《电化学(中英文)》期刊官方网站,今天是
锂离子电池近期研究专辑 (厦门大学 杨勇教授主编)

电化学储钠材料的研究进展

  • 钱江锋 ,
  • 高学平 ,
  • 杨汉西
展开
  • 1. 武汉大学化学与分子科学学院,湖北 武汉 430072;2. 南开大学新能源材料化学研究所,天津 300071

收稿日期: 2013-03-27

  修回日期: 2013-05-28

  网络出版日期: 2013-06-05

基金资助

国家973计划项目(No. 2009CB220103)和国家自然科学基金项目(No. 21273167)资助

Electrochemical Na-Storage Materials and Their Applications for Na-ion Batteries

  • QIAN Jiang-Feng ,
  • GAO Xue-Ping ,
  • YANG Han-Xi
Expand
  • 1. Department of Chemistry, Wuhan University, Wuhan, 430072,Hubei, China;
    2. Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China

Received date: 2013-03-27

  Revised date: 2013-05-28

  Online published: 2013-06-05

摘要

大规模储能的二次电池不仅需要具有适宜的电化学性能,更需考虑资源、成本和环境效益等应用要求. 锂离子电池储能的大规模应用也将受到制约. 从资源与环境方面考虑,钠离子电池作为储能电池更具应用优势. 然而,从目前的技术现状来看,几类不同的嵌钠正极材料虽显现出可观的嵌钠容量与较好的循环性,但能量密度与功率密度尚待提高. 硬碳材料和合金负极最有希望用于钠离子电池,这类材料的初始充放电效率和循环稳定性仍有待改善. 本文简要分析了锂离子电池与钠离子电池在材料要求方面的差异,回顾了近年来钠离子电池材料探索中的突破性进展,并主要结合本课题组的研究工作讨论了钠离子电池及其关键材料的发展方向.

本文引用格式

钱江锋 , 高学平 , 杨汉西 . 电化学储钠材料的研究进展[J]. 电化学, 2013 , 19(6) : 523 -529 . DOI: 10.13208/j.electrochem.130351

Abstract

Oncoming large scale electric energy storage (EES) requires battery systems not only to have sufficient storage capacity but also to be cost-effective and environmentally friendly. Li-ion batteries for widespread EES applications may be limited due to the constraint of global lithium resource. From the considerations of available resources and environmental impact, Na-ion batteries have potential advantages as next generation secondary batteries and an alternative to Li-ion batteries. However, in the present state of the art, the Na-storage cathodes reported so far are still deficient both in energy density and power capability, while the carbon and alloy anodes for Na-ion batteries have also the problem of insufficient cycling life for battery applications. This paper reviews briefly the recent advances in the development of Na-storage materials, analyses the different structural requirements for the materials in Li-ion and Na-ion batteries and discusses the possible strategies for development of low cost and pollution-free materials for rechargeable Na-ion batteries.

参考文献

[1] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935.
[2] Yang Z, Zhang J, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613.
[3] Kim S W, Seo D H, Ma X, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721.
[4] Palomares V, Serras P, Villaluenga I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901.
[5] Tahil W. The trouble with lithium Implications of Future PHEV Production for Lithium Demand[R]. Meridian International Research, 2007.
[6] Tarascon J M. Is lithium the new gold?[J]. Nature Chemistry, 2010, 2(6): 510-510.
[7] Delmas C, Braconnier J J, Fouassier C, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ionics, 1981, 3/4: 165-169.
[8] Shacklette L, Jow TTownsend L. Rechargeable electrodes from sodium cobalt bronzes[J]. Journal of The Electrochemical Society, 1988, 135(11): 2669-2674.
[9] Carlier D, Cheng J H, Berthelot R, et al. The P2-Na2/3Co2/3Mn1/3O2 phase: Structure, physical properties and electrochemical behavior as positive electrode in sodium battery[J]. Dalton Transactions, 2011, 40(36): 9306-9312.
[10] Cao Y, Xiao L, Wang W, et al. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J]. Advanced Materials, 2011, 23(28): 3155-3160.
[11] Mendiboure A, Delmas C, Hagenmuller P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes[J]. Journal of Solid State Chemistry, 1985, 57(3): 323-331.
[12] Caballero A, Hernan L, Morales J, et al. Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behaviour as cathode in sodium cells[J]. Journal of Materials Chemistry, 2002, 12(4): 1142-1147.
[13] Paulsen J M, Dahn J R. Studies of the layered manganese bronzes, Na2/3[Mn1-xMx]O2 with M=Co, Ni, Li, and Li2/3[Mn1-xMx]O2 prepared by ion-exchange[J]. Solid State Ionics, 1999, 126(1/2): 3-24.
[14] Kim D, Kang S H, Slater M, et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes[J]. Advanced Energy Materials, 2011, 1(3): 333-336.
[15] Hamani D, Ati M, Tarascon J M, et al. NaxVO2 as possible electrode for Na-ion batteries[J]. Electrochemistry Communications, 2011, 13(9): 938-941.
[16] Liu H, Zhou H, Chen L, et al. Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries[J]. Journal of Power Sources, 2011, 196(2): 814-819.
[17] Bridson J N, Quinlan S E, Tremaine P R. Synthesis and crystal structure of maricite and sodium iron(III) hydroxyphosphate[J]. Chemistry of Materials, 1998, 10(3): 763-768.
[18] Lee K T, Ramesh T N, Nan F, et al. Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries[J]. Chemistry of Materials, 2011, 23(16): 3593-3600.
[19] Recham N, Chotard J N, Dupont L, et al. Ionothermal synthesis of sodium-based fluorophosphate cathode materials[J]. Journal of The Electrochemical Society, 2009, 156(12): A993-A999.
[20] Barker J, Saidi M, Swoyer J A. sodium-ion cell based on the fluorophosphate compound NaVPO4F[J]. Electrochemical and solid-state letters, 2003, 6(1): A1-A4.
[21] Qian J F, Zhou M, Cao Y L, et al. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries[J]. Advanced Energy Materials, 2012, 2(4): 410-414.
[22] Qian J(钱江锋), Zhou M(周敏), Cao Y(曹余良), et al. NaxMyFe(CN)6(M=Fe, Co, Ni): A new class of cathode materials for sodium ion batteries[J]. Journal of Electrochemistry(电化学), 2012, 18(2): 108-112.
[23] Alcantara R, Madrigal F J F, Lavela P, et al. Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells[J]. Carbon, 2000, 38(7): 1031-1041.
[24] Thomas P, Billaud D Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties[J]. Electrochimica Acta, 2000, 46(1): 39-47.
[25] Wenzel S, Hara T, Janek J, et al. Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies[J]. Energy & Environmental Science, 2011, 4(9): 3342-3345.
[26] Alcantara R, Lavela P, Ortiz G F, et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and solid-state letters, 2005, 8(4): A222-A225.
[27] Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of The Electrochemical Society, 2000, 147(4): 1271-1273.
[28] Chevrier V L, Ceder G. Challenges for Na-ion negative electrodes[J]. Journal of The Electrochemical Society, 2011, 158(9): A1011-A1014.
[29] Qian J, Chen Y, Wu L, et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries[J]. Chemical Communications, 2012, 48(56): 7070-7072.
[30] Qian J F, Wu X Y, Cao Y, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Chemie International Edition, 2013, 52(17): 4633-4636.
[31] Li Z, Young D, Xiang K, et al. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system[J]. Advanced Energy Materials, 2013, 3(3): 290-294.
[32] Wu X Y, Cao Y L, Ai X P, et al. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6[J]. Electrochemistry Communications, 2013, 31: 145-148.
文章导航

/