[1] Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25nm vias and trenches in polymers[J]. Applied Physics Letters, 1995, 67(21): 3114-3116.[2] Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution[J]. Science, 1996, 272(5258): 85-87.[3] Wang C, Chou S Y. Integration of metallic nanostructures in fluidic channels for fluorescence and Raman enhancement by nanoimprint lithography and lift-off on compositional resist stack[J]. Microelectronic Engineering, 2012, 98: 693-697.[4] Qin D, Xia Y N, Whitesides G M. Soft lithography for micro-and nanoscale patterning[J]. Nature Protocols, 2010, 5(3): 491-502.[5] Xia Y N, Whitesides G M. Soft lithography[J]. Angewandte Chemie-International Edition, 1998, 37 (5): 551-575.[6] Kumar A, Whitesides G M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastic stamp and an alkanethiol ink followed by chemical etching[J]. Applied Physics Letters, 1993, 63(14): 2002-2004.[7] Xia Y N, McClelland J J, Gupta R, et al. Replica molding using polymeric materials: A practical step toward nanomanufacturing [J]. Advanced Materials, 1997, 9 (2): 147-149.[8] Xia Y N, Whitesides G M. Fabrication of three-dimensional microstructures: Microtransfer molding [J]. Advanced Materials, 1996, 8(10): 837-840.[9] Kumar A, Whitesides G M. Sovent-assisted micro contact molding: A convenient method for fabricating three dimensional structures of polymeric materials[J]. Advanced Materials, 1997, 9(8): 651-654.[10] Baytekin B, Baytekin H T, Grzybowski B A. What really drives chemical reaction on contact charged surfaces[J]. Journal of The American Chemical Society, 2012, 134(17): 7223-7226.[11] Campbell C J, Smoukov S K, Bishop K J M, et al. Direct print of 3D and curvilinear micrometer-sized architectures into solid substrated with sub-micrometer resolution[J]. Advanced Materials, 2006, 18(15): 2004-2008.[12] Campbell C J, Fialkowski M, Klajn R. Color micro- and nanopatterning with counter-propagating reaction-diffusion fronts[J]. Advanced Materials, 2004, 16(21): 1912-1917.[13] Grzybowski B A, Bishop K J M, Campbell C J, et al. Micro-and nanotechnology via reaction-diffusion [J]. Soft Matter, 2005, 1(2): 114-128.[14] Campbell C J, Smoukov S K, Bishop K J M, et al. Reactive surface micropatterning by wet stamping[J]. Langmuir, 2005, 21(7): 2637-2640.[15] Tang J, Zhuang J L, Zhang L, et al. Cu micropatterning on n-Si(111) by selective electrochemical deposition using an agarose stamp[J]. Electrochimica Acta, 2008, 53(18): 5628-5631.[16] Zhang L, Ma X Z, Zhuang J L. Microfabrication of a diffractive microlens array on n-GaAs by an efficient electrochemical method [J]. Advanced Materials, 2007, 19(22): 3912-3918.[17] Tang J, Zhang L, Tian X C. Micromaching on copper and nickel by electrochemical wet stamping[J]. Journal of Micromechanics and Microengineering, 2010, 20(11): 115030-115035.[18] Sekine S, Nakanishi S, Miyake T, et al. Electrodes combined with an agarose stamp for addressable micropatterning[J]. Langmuir, 2010, 26(13): 11526-11529.[19] Cui X T, Zhou D D. Poly(3,4-ethylenedioxythiophene) for chronic neural stimulation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(4): 502-508. |