电化学(中英文) ›› 2022, Vol. 28 ›› Issue (9): 2214010. doi: 10.13208/j.electrochem.2214010
所属专题: “电催化和燃料电池”专题文章
倪静1,2,#, 施兆平1,2,#, 王显1,2, 王意波1,2, 吴鸿翔1,2, 刘长鹏1,2,*(), 葛君杰1,2,3,*(), 邢巍1,2,*()
收稿日期:
2022-07-08
修回日期:
2022-07-21
出版日期:
2022-09-28
发布日期:
2022-08-17
Jing Ni1,2,#, Zhao-Ping Shi1,2,#, Xian Wang1,2, Yi-Bo Wang1,2, Hong-Xiang Wu1,2, Chang-Peng Liu1,2,*(), Jun-Jie Ge1,2,3,*(), Wei Xing1,2,*()
Received:
2022-07-08
Revised:
2022-07-21
Published:
2022-09-28
Online:
2022-08-17
Contact:
*Liu Chang-Peng, Tel:(86-431)85262225, E-mail: About author:
First author contact:#These authors contributed equally to this work.
摘要:
开发高性能、 低成本的氧析出反应(OER)电催化剂是促进质子交换膜水电解(PEMWE)制氢规模化应用的关键。迄今为止, OER催化剂的最佳选项仍为贵金属铱(Ir), 但其仍存在活性不足和储量稀缺的问题, 进而增加了材料成本和电力成本。因此, 开发低Ir载量、 高活性和稳定性间距, 且能够满足PEMWE设备中大电流密度和长期运行要求的OER催化剂是十分必要的。这些目标的实现需要深入理解酸性OER机制、明晰材料设计方法, 并建立可靠的性能评估指标(特别是对耐久性的评估)。综上,本文首先系统总结了目前被广泛接受的酸性OER活性表达机制(即吸附析出机制、 晶格氧氧化机制和多活性中心机制)和失活机制(即活性物种溶解、晶相和形态演化、 催化剂脱落和活性位点阻塞), 为催化剂的微观结构设计提供指导。其次, 我们讨论了最近报道的几类低铱OER催化剂, 包括多金属合金氧化物、 负载型催化剂、具有特殊空间结构的催化剂和单位点催化剂, 并重点描述低Ir催化剂中的性能如何得以调控以及其中潜在的构效关系。随后, 我们介绍了常用的催化剂稳定性评价指标、 催化剂失活表征技术以及模拟PEMWE实际操作条件的催化剂寿命测试方法,希望为催化剂筛选提供依据。最后, 针对未来可用于PEMWE体系的低铱OER催化剂的探索提出了一些可行建议。
倪静, 施兆平, 王显, 王意波, 吴鸿翔, 刘长鹏, 葛君杰, 邢巍. 低铱酸性氧析出电催化剂的研究进展[J]. 电化学(中英文), 2022, 28(9): 2214010.
Jing Ni, Zhao-Ping Shi, Xian Wang, Yi-Bo Wang, Hong-Xiang Wu, Chang-Peng Liu, Jun-Jie Ge, Wei Xing. Recent Development of Low Iridium Electrocatalysts toward Efficient Water Oxidation[J]. Journal of Electrochemistry, 2022, 28(9): 2214010.
Mechanism | AEM | LOM | OPM |
---|---|---|---|
Catalytic process | Cation redox | Anion redox | Cation redox |
Theoretical overpotential | Limited by the scaling relation between OH* and OOH*, minimum value of ~ 0.37 V | Minimum value of ~0.17 V | No related reports |
Active site | Single coordination unsaturated metal sites | Single coordination unsaturated oxygen sites | Two coordinations unsaturated metal sites with suitable distance |
Identification method | In situ attenuated total reflection infrared | Isotope labelled in situ differential electrochemical mass spectra | Operando synchrotron FT infrared |
Catalyst | Electrode | Electrolyte solution | Concentration | Ir loading/ μg·cm-2 | Overpoten- tial@ 10 mA·cm-2/ mV | Cell voltage@ 1 A·cm-2/V | Stability | Ref. |
---|---|---|---|---|---|---|---|---|
Ir-Ni(9.3) | Gold working electrode | HClO4 | 0.1 mol·L-1 | 30.6 | ~ 270 | [ | ||
Nafion | 100 | ~1.60 | ||||||
Cu0.5Ir0.5Oδ | Ti plate | HClO4 | 0.1 mol·L-1 | ~200 | ~368 | [ | ||
IrCoNi PHNC | GC | HClO4 | 0.1 mol·L-1 | 10 | 303 | 1 h@5 mA·cm-2 | [ | |
9R-BaIrO3 | GC | H2SO4 | 0.5 mol·L-1 | ~178 | 230 | 48 h@10 mA·cm-2 | [ | |
Au@AuIr2 | GC | H2SO4 | 0.5 mol·L-1 | 20 | 261 | 30 h@10 mA·cm-2 | [ | |
IrHfxOy | Au | HClO4 | 0.1 mol·L-1 | ~ 0.6 | ~ 330 | 6 h@5 mA·cm-2 | [ | |
Gd-pIrO2 | GC | H2SO4 | 0.5 mol·L-1 | 278 | 287 | 6 h@10 mA·cm-2 | [ | |
Ir-MoO3 | CP | H2SO4 | 0.5 mol·L-1 | ~ 77 | 156 | 50 h@10 mA·cm-2 | [ | |
Ir@WOxNR | W foil | H2SO4 | 0.5 mol·L-1 | 144 | 330 | 10 h@100 mA·cm-2 | [ | |
Nafion115 | 144 | 1.79 | 1030 h@0.5 A·cm-2 | |||||
IrO2@Ir/TiN | GC | H2SO4 | 0.5 mol·L-1 | 379 | 265 | 6 h@10 mA·cm-2 | [ | |
IrO2@α-MnO2 | Ti plate | HClO4 | 0.1 mol·L-1 | 200 | 275 | 5 h@10 mA·cm-2 | [ | |
Ir-Pt-TiO2 | Au | HClO4 | 0.1 mol·L-1 | 3.49 | > 570 | 5 h@1.8 V | [ | |
Nafion117 | 1000 | ~ 1.90 | ||||||
IrOx/ATO | GC | H2SO4 | 0.05 mol·L-1 | 10.2 | ~ 430 | 15 h@1 mA·cm-2 | [ | |
Nafion212 | 1000 | ~ 1.69 | ||||||
Ir/Fe4N | GC | H2SO4 | 0.5 mol·L-1 | 76.5 | 316 | 2 h@10 mA·cm-2 | [ | |
IrO2(1:100)- 450 °C | GC | H2SO4 | 0.5 mol·L-1 | 324 | 282 | 2 h@1.56 V | [ | |
Nafion117 | 1714 | 1.649 | ||||||
IrO2 NN-L | GC | H2SO4 | 1 mol·L-1 | 214 | 313 | 2 h@10 mA·cm-2 | [ | |
Nafion117 | 3428 | ~ 1.80 | 250 h@2 A·cm-2 | |||||
Ir NF | GC | H2SO4 | 0.05 mol·L-1 | 200 | 430 | [6] | ||
Nafion115 | 200 | ~ 1.75 | ||||||
Ir NSs | GC | H2SO4 | 0.5 mol·L-1 | 137 | 240 | 8 h @10 mA·cm-2 | [ | |
1T-IrO2 | GC | HClO4 | 0.1 mol·L-1 | 177 | 197 | 45 h@50 mA·cm-2 | [ | |
Nafion117 | 850 | 1.5 V@ 253 mA cm-2 | 126@250 mA·cm-2 | |||||
3R-IrO2 | GC | HClO4 | 0.1 mol·L-1 | ~231 | 188 | 511 h@10 mA·cm-2 | [ | |
Ir0.06Co2.94O4 | Au | HClO4 | 0.1 mol·L-1 | ~5.2 | 292 | 200 h @10 mA·cm-2 | [ | |
Ir-MnO2 | CP | H2SO4 | 0.5 mol·L-1 | 192 | 218 | 650 h@10 mA·cm-2 | [ | |
Ir-NiCo2O4 NSs | CC | H2SO4 | 0.5 mol·L-1 | 2.44 | 240 | 70 h@10 mA·cm-2 | [ | |
AD-HN-Ir | CP | H2SO4 | 0.5 mol·L-1 | 3.5 | 216 | 100 h@10 mA·cm-2 | [ |
[1] |
Lagadec M F, Grimaud A. Water electrolysers with closed and open electrochemical systems[J]. Nat. Mater., 2020, 19(11): 1140-1150.
doi: 10.1038/s41563-020-0788-3 pmid: 33020614 |
[2] |
Zheng Y R, Vernieres J, Wang Z B, Zhang K, Hochfilzer D, Krempl K, Liao T W, Presel F, Altantzis T, Fatermans J, Scott S B, Secher N M, Moon C, Liu P, Bals S, Van Aert S, Cao A, Anand M, Norskov J K, Kibsgaard J, Chorkendorff I. Monitoring oxygen production on mass-selected iridium-tantalum oxide electrocatalysts[J]. Nat. Energy, 2022, 7(1): 55-64.
doi: 10.1038/s41560-021-00948-w URL |
[3] |
Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014.
doi: 10.1126/science.aaf5050 URL |
[4] |
Lin C, Li J L, Li X P, Yang S, Luo W, Zhang Y J, Kim S H, Kim D H, Shinde S S, Li Y F, Liu Z P, Jiang Z, Lee J H. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation[J]. Nat. Catal., 2021, 4(12): 1012-1023.
doi: 10.1038/s41929-021-00703-0 URL |
[5] | Shi Z P, Wang X, Ge J J, Liu C P, Xing W. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts[J]. Nano-scale, 2020, 12(25): 13249-13275. |
[6] |
Hegge F, Lombeck F, Cruz Ortiz E, Bohn L, von Holst M, Kroschel M, Hübner J, Breitwieser M, Strasser P, Vierrath S. Efficient and stable low iridium loaded anodes for PEM water electrolysis made possible by nanofiber interlayers[J]. ACS Appl. Energy Mater., 2020, 3(9): 8276-8284.
doi: 10.1021/acsaem.0c00735 URL |
[7] |
Park S A, Kim K S, Kim Y T. Electrochemically activated iridium oxide black as promising electrocatalyst having high activity and stability for oxygen evolution reaction[J]. ACS Energy Lett., 2018, 3(5): 1110-1115.
doi: 10.1021/acsenergylett.8b00368 URL |
[8] |
Dickens C F, Nörskov J K. A Theoretical Investigation into the role of surface defects for oxygen evolution on RuO2[J]. J. Phys. Chem. C, 2017, 121(34): 18516-18524.
doi: 10.1021/acs.jpcc.7b03481 URL |
[9] |
Rong X, Parolin J, Kolpak A M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution[J]. ACS Catalysis, 2016, 6(2): 1153-1158.
doi: 10.1021/acscatal.5b02432 URL |
[10] |
Kasian O, Geiger S, Stock P, Polymeros G, Breitbach B, Savan A, Ludwig A, Cherevko S, Mayrhofer K J J. On the origin of the improved ruthenium stability in RuO2-IrO2 mixed oxides[J]. J. Electrochem. Soc., 2016, 163(11): F3099-F3104.
doi: 10.1149/2.0131611jes URL |
[11] |
Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J P, Savan A, Shrestha B R, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer K J J. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability[J]. Cataly. Today, 2016, 262: 170-180.
doi: 10.1016/j.cattod.2015.08.014 URL |
[12] |
Binninger T, Mohamed R, Waltar K, Fabbri E, Levecque P, Kotz R, Schmidt T J. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts[J]. Sci. Rep., 2015, 5: 12167.
doi: 10.1038/srep12167 pmid: 26178185 |
[13] |
Cherevko S, Zeradjanin A R, Topalov A A, Kulyk N, Katsounaros I, Mayrhofer K J J. Dissolution of noble metals during oxygen evolution in acidic media[J]. ChemCatChem, 2014, 6(8): 2219-2223.
doi: 10.1002/cctc.201402194 URL |
[14] |
Danilovic N, Subbaraman R, Chang K C, Chang S H, Kang Y J, Snyder J, Paulikas A P, Strmcnik D, Kim Y T, Myers D, Stamenkovic V R, Markovic N M. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments[J]. J. Phys. Chem. Lett., 2014, 5(14): 2474-2478.
doi: 10.1021/jz501061n pmid: 26277818 |
[15] |
Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nörskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
doi: 10.1002/cctc.201000397 URL |
[16] |
Reier T, Nong H N, Teschner D, Schlögl R, Strasser P. Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts[J]. Adv. Energy Mater., 2017, 7(1): 1601275.
doi: 10.1002/aenm.201601275 URL |
[17] |
Koper MTM. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J]. Chem. Sci., 2013, 4(7): 2710-2723.
doi: 10.1039/c3sc50205h URL |
[18] |
Koper M T M. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis[J]. J. Electroanal. Chem., 2011, 660(2): 254-260.
doi: 10.1016/j.jelechem.2010.10.004 URL |
[19] |
Rossmeisl J, Logadottir A, Nörskov J K. Electrolysis of water on (oxidized) metal surfaces[J]. Chem. Phys., 2005, 319(1-3): 178-184.
doi: 10.1016/j.chemphys.2005.05.038 URL |
[20] |
Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis[J]. ChemCatChem, 2010, 2(7): 724-761.
doi: 10.1002/cctc.201000126 URL |
[21] |
Li A, Kong S, Guo C, Ooka H, Adachi K, Hashizume D, Jiang Q, Han H, Xiao J, Nakamura R. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid[J]. Nat. Catal., 2022, 5(2): 109-118.
doi: 10.1038/s41929-021-00732-9 URL |
[22] |
Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt T J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catal. Sci. Technol., 2014, 4(11): 3800-3821.
doi: 10.1039/C4CY00669K URL |
[23] |
Mefford J T, Rong X, Abakumov A M, Hardin W G, Dai S, Kolpak A M, Johnston K P, Stevenson K J. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts[J]. Nat. Commun., 2016, 7: 11053.
doi: 10.1038/ncomms11053 pmid: 27006166 |
[24] |
Yoo J S, Rong X, Liu Y, Kolpak A M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal., 2018, 8(5): 4628-4636.
doi: 10.1021/acscatal.8b00612 URL |
[25] |
Grimaud A, Diaz-Morales O, Han B, Hong W T, Lee Y L, Giordano L, Stoerzinger K A, Koper M T M, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat. Chem., 2017, 9(5): 457-465.
doi: 10.1038/nchem.2695 pmid: 28430191 |
[26] |
Song F, Busch M M, Lassalle-Kaiser B, Hsu C S, Petku-cheva E, Bensimon M, Chen H M, Corminboeuf C, Hu X. An unconventional iron nickel catalyst for the oxygen evolution reaction[J]. ACS Cent. Sci., 2019, 5(3): 558-568.
doi: 10.1021/acscentsci.9b00053 URL |
[27] |
Yoo J S, Rong X, Liu Y, Kolpak A M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal., 2018, 8(5): 4628-4636.
doi: 10.1021/acscatal.8b00612 URL |
[28] |
Grimaud A, Diaz-Morales O, Han B, Hong W T, Lee Y L, Giordano L, Stoerzinger K A, Koper M T M, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat. Chem., 2017, 9(5): 457-465.
doi: 10.1038/nchem.2695 pmid: 28430191 |
[29] |
Koper M T M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis[J]. Chem. Sci., 2013, 4(7): 2710-2723.
doi: 10.1039/c3sc50205h URL |
[30] |
Li A, Ooka H, Bonnet N, Hayashi T, Sun Y, Jiang Q, Li C, Han H, Nakamura R. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions[J]. Angew. Chem.-Int. Edit., 2019, 58(15): 5054-5058.
doi: 10.1002/anie.201813361 URL |
[31] |
Zhang R, Dubouis N, Ben Osman M, Yin W, Sougrati M T, Corte DAD, Giaume D, Grimaud A. A Dissolution/pre-cipitation equilibrium on the surface of iridium-based perovskites controls their activity as oxygen evolution reaction catalysts in acidic media[J]. Angew. Chem. Int. Ed., 2019, 58(14): 4571-4575.
doi: 10.1002/anie.201814075 URL |
[32] |
Kasian O, Grote J P, Geiger S, Cherevko S, Mayrhofer K J J. The common intermediates of oxygen evolution and dissolution reactions during water electrolysis on iridium[J]. Angew. Chem. Int. Ed., 2018, 57(9): 2488-2491.
doi: 10.1002/anie.201709652 pmid: 29219237 |
[33] |
Geiger S, Kasian O, Ledendecker M, Pizzutilo E, Mingers A M, Fu W T, Diaz-Morales O, Li Z, Oellers T, Fruchter L, Ludwig A, Mayrhofer K J J, Koper M T M, Cherevko S. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nat. Catal., 2018, 1(7): 508-515.
doi: 10.1038/s41929-018-0085-6 URL |
[34] |
Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nat. Commun., 2019, 10(1): 4849.
doi: 10.1038/s41467-019-12886-z pmid: 31649237 |
[35] |
Yao Y C, Hu S L, Chen W X, Huang Z Q, Wei W C, Yao T, Liu R R, Zang K T, Wang X Q, Wu G, Yuan W J, Yuan T W, Zhu B Q, Liu W, Li Z J, He D S, Xue Z G, Wang Y, Zheng X S, Dong J C, Chang C R, Chen Y X, Hong X, Luo J, Wei S Q, Li W X, Strasser P, Wu Y E, Li Y D. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nat. Catal., 2019, 2(4): 304-313.
doi: 10.1038/s41929-019-0246-2 URL |
[36] |
Wen Y Z, Chen P N, Wang L, Li S Y, Wang Z Y, Abed J, Mao X N, Min Y M, Dinh C T, De Luna P, Huang R, Zhang L S, Wang L, Wang L P, Nielsen R J, Li H H, Zhuang T T, Ke C C, Voznyy O, Hu Y F, Li Y Y, Goddard W A, Zhang B, Peng H S, Sargent E H. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation[J]. J. Am. Chem. Soc., 2021, 143(17): 6482-6490.
doi: 10.1021/jacs.1c00384 URL |
[37] |
Park J, Sa Y J, Baik H, Kwon T, Joo S H, Lee K. Iridium-based multimetallic nanoframe@nanoframe structure: an efficient and robust electrocatalyst toward oxygen evolution reaction[J]. ACS Nano, 2017, 11(6): 5500-5509.
doi: 10.1021/acsnano.7b00233 pmid: 28599106 |
[38] |
Zeng F, Mebrahtu C, Liao L, Beine A K, Palkovits R. Stability and deactivation of OER electrocatalysts: a review[J]. J. Energy Chem., 2022, 69: 301-329.
doi: 10.1016/j.jechem.2022.01.025 URL |
[39] |
Martelli G N, Ornelas R, Faita G. Deactivation mechanisms of oxygen evolviong anodes at high current densities[J]. Electrochim. Acta, 1994, 39(11/12): 1151-1158.
doi: 10.1016/0013-4686(94)E0030-4 URL |
[40] |
Edgington J, Schweitzer N, Alayoglu S, Seitz L C. Constant change: exploring dynamic oxygen evolution reaction catalysis and material transformations in strontium zinc iridate perovskite in acid[J]. J. Am. Chem. Soc., 2021, 143(26): 9961-9971.
doi: 10.1021/jacs.1c04332 URL |
[41] |
Hayashi T, Bonnet-Mercier N, Yamaguchi A, Suetsugu K, Nakamura R. Electrochemical characterization of ma-nganese oxides as a water oxidation catalyst in proton exchange membrane electrolysers[J]. R. Soc. Open Sci., 2019, 6(5): 190122.
doi: 10.1098/rsos.190122 URL |
[42] |
Kirshenbaum M J, Richter M H, Dasog M. Electrochemical water oxidation in acidic solution using titanium diboride (TiB2) catalyst[J]. ChemCatChem, 2019, 11(16): 3877-3881.
doi: 10.1002/cctc.201801736 |
[43] |
Lu X Y, Zhao C A. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nat. Commun., 2015, 6: 6616.
doi: 10.1038/ncomms7616 pmid: 25776015 |
[44] |
Angulo A, van der Linde P, Gardeniers H, Modestino M, Fernández Rivas D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors[J]. Joule, 2020, 4(3): 555-579.
doi: 10.1016/j.joule.2020.01.005 URL |
[45] |
Alia S M, Shulda S, Ngo C, Pylypenko S, Pivovar B S. Iridium-based nanowires as highly active, oxygen evolution reaction electrocatalysts[J]. ACS Catal., 2018, 8(3): 2111-2120.
doi: 10.1021/acscatal.7b03787 URL |
[46] |
Sun W, Song Y, Gong X Q, Cao L M, Yang J. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity[J]. Chem. Sci., 2015, 6(8): 4993-4999.
doi: 10.1039/C5SC01251A URL |
[47] |
Feng J R, Lv F, Zhang W Y, Li P H, Wang K, Yang C, Wang B, Yang Y, Zhou J H, Lin F, Wang G C, Guo S J. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis[J]. Adv. Mater., 2017, 29(47): 1703798.
doi: 10.1002/adma.201703798 URL |
[48] |
Li N, Cai L, Wang C, Lin Y, Huang J Z, Sheng H Y, Pan H B, Zhang W, Ji Q Q, Duan H L, Hu W, Zhang W H, Hu F C, Tan H, Sun Z H, Song B, Jin S, Yan W S. Identification of the active-layer structures for acidic oxygen evolution from 9R-BaIrO3 electrocatalyst with enhanced iridium mass activity[J]. J. Am. Chem. Soc., 2021, 143(43): 18001-18009.
doi: 10.1021/jacs.1c04087 URL |
[49] |
Wang H M, Chen Z N, Wu D S, Cao M N, Sun F F, Zhang H, You H H, Zhuang W, Cao R. Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core-shell alloy structure[J]. J. Am. Chem. Soc., 2021, 143(12): 4639-4645.
doi: 10.1021/jacs.0c12740 pmid: 33656891 |
[50] |
Zhao F, Wen B, Niu W H, Chen Z, Yan C, Selloni A, Tully C G, Yang X F, Koel B E. Increasing iridium oxide activity for the oxygen evolution reaction with hafnium modification[J]. J. Am. Chem. Soc., 2021, 143(38): 15616-15623.
doi: 10.1021/jacs.1c03473 pmid: 34469132 |
[51] |
Wang Y B, Hou S, Ma R P, Jiang J D, Shi Z P, Liu C P, Ge J J, Xing W. Modulating crystallinity and surface electronic structure of IrO2 via gadolinium doping to promote acidic oxygen evolution[J]. ACS Sustain. Chem. Eng., 2021, 9(32): 10710-10716.
doi: 10.1021/acssuschemeng.0c08887 URL |
[52] |
Liu X H, Xi S B, Kim H, Kumar A, Lee J, Wang J, Tran N Q, Yang T, Shao X D, Liang M F, Kim M G, Lee H. Restructuring highly electron-deficient metal-metal oxides for boosting stability in acidic oxygen evolution reaction[J]. Nat. Commun., 2021, 12(1): 5676.
doi: 10.1038/s41467-021-26025-0 pmid: 34584105 |
[53] |
Jiang G, Yu H M, Li Y H, Yao D W, Chi J, Sun S C, Shao Z G. Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis[J]. ACS Appl. Mater. Interfaces, 2021, 13(13): 15073-15082.
doi: 10.1021/acsami.0c20791 URL |
[54] |
Li G Q, Li K, Yang L, Chang J F, Ma R P, Wu Z J, Ge J J, Liu C P, Xing W. Boosted performance of Ir species by employing tin as the support toward oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 38117-38124.
doi: 10.1021/acsami.8b14172 URL |
[55] |
Sun W, Zhou Z H, Zaman W Q, Cao L M, Yang J. Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst[J]. ACS Appl. Mater. Interfaces, 2017, 9(48): 41855-41862.
doi: 10.1021/acsami.7b12775 URL |
[56] |
Regmi Y N, Tzanetopoulos E, Zeng G S, Peng X, Kushner D I, Kistler T A, King L A, Danilovic N. Supported oxygen evolution catalysts by design: toward lower precious metal loading and improved conductivity in proton exchange membrane water electrolyzers[J]. ACS Catal., 2020, 10(21): 13125-13135.
doi: 10.1021/acscatal.0c03098 URL |
[57] |
Oh H S, Nong H N, Reier T, Gliech M, Strasser P. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers[J]. Chem. Sci., 2015, 6(6): 3321-3328.
doi: 10.1039/C5SC00518C URL |
[58] |
Tackett B M, Sheng W C, Kattel S, Yao S Y, Yan B H, Kuttiyiel K A, Wu Q Y, Chen J G G. Reducing iridium loading in oxygen evolution reaction electrocatalysts using core-shell particles with nitride cores[J]. ACS Catal., 2018, 8(3): 2615-2621.
doi: 10.1021/acscatal.7b04410 URL |
[59] |
Li G Q, Li S T, Xiao M L, Ge J J, Liu C P, Xing W. Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure[J]. Nanoscale, 2017, 9(27): 9291-9298.
doi: 10.1039/C7NR02899G URL |
[60] |
Lim J, Park D, Jeon S S, Roh C W, Choi J, Yoon D, Park M, Jung H, Lee H. Ultrathin IrO2 nanoneedles for electrochemical water oxidation[J]. Adv. Funct. Mater., 2018, 28(4): 1704796.
doi: 10.1002/adfm.201704796 URL |
[61] |
Jiang B, Guo Y N, Kim J, Whitten A E, Wood K, Kani K, Rowan A E, Henzie J, Yamauchi Y. Mesoporous metallic iridium nanosheets[J]. J. Am. Chem. Soc., 2018, 140(39): 12434-12441.
doi: 10.1021/jacs.8b05206 pmid: 30129750 |
[62] |
Dang Q, Lin H P, Fan Z L, Ma L, Shao Q, Ji Y J, Zheng F F, Geng S Z, Yang S Z, Kong N N, Zhu W X, Li Y Y, Liao F, Huang X Q, Shao M W. Iridium metallene oxide for acidic oxygen evolution catalysis[J]. Nat. Commun., 2021, 12(1): 6007.
doi: 10.1038/s41467-021-26336-2 pmid: 34650084 |
[63] |
Fan Z L, Ji Y J, Shao Q, Geng S Z, Zhu W X, Liu Y, Liao F, Hu Z W, Chang Y C, Pao C W, Li Y Y, Kang Z H, Shao M W. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide[J]. Joule, 2021, 5(12): 3221-3234.
doi: 10.1016/j.joule.2021.10.002 URL |
[64] |
Shan J Q, Ye C, Chen S M, Sun T L, Jiao Y, Liu L M, Zhu C Z, Song L, Han Y, Jaroniec M, Zhu Y H, Zheng Y, Qiao S Z. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation[J]. J. Am. Chem. Soc., 2021, 143(13): 5201-5211.
doi: 10.1021/jacs.1c01525 URL |
[65] |
Shi Z P, Wang Y, Li J, Wang X, Wang Y B, Li Y, Xu W L, Jiang Z, Liu C P, Xing W, Ge J J. Confined Ir single sites with triggered lattice oxygen redox: toward boosted and sustained water oxidation catalysis[J]. Joule, 2021, 5(8): 2164-2176.
doi: 10.1016/j.joule.2021.05.018 URL |
[66] |
Yin J, Jin J, Lu M, Huang B L, Zhang H, Peng Y, Xi P X, Yan C H. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media[J]. J. Am. Chem. Soc., 2020, 142(43): 18378-18386.
doi: 10.1021/jacs.0c05050 URL |
[67] |
Su H, Zhou W L, Zhou W, Li Y L, Zheng L R, Zhang H, Liu M H, Zhang X X, Sun X, Xu Y Z, Hu F C, Zhang J, Hu T D, Liu Q H, Wei S Q. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation[J]. Nat. Commun., 2021, 12(1): 6118.
doi: 10.1038/s41467-021-26416-3 URL |
[68] |
Hao S Y, Sheng H Y, Liu M, Huang J Z, Zheng G K, Zhang F, Liu X N, Su Z W, Hu J J, Qian Y, Zhou L N, He Y, Song B, Lei L C, Zhang X W, Jin S. Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers[J]. Nat. Nanotechnol., 2021, 16(12): 1371-1377.
doi: 10.1038/s41565-021-00986-1 URL |
[69] |
Pi Y C, Shao Q, Wang P T, Guo J, Huang X Q. General formation of monodisperse IrM (M = Ni, Co, Fe) bimeta-llic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting[J]. Adv. Funct. Mater., 2017, 27(27): 1700886.
doi: 10.1002/adfm.201700886 URL |
[70] |
Hao S Y, Wang Y H, Zheng G K, Qiu L S, Xu N, He Y, Lei L C, Zhang X W. Tuning electronic correlations of ultra-small IrO2 nanoparticles with La and Pt for enhanced oxygen evolution performance and long-durable stability in acidic media[J]. Appl. Catal. B, 2020, 266: 118643.
doi: 10.1016/j.apcatb.2020.118643 URL |
[71] | Jin Z Y, Lv J, Jia H L, Liu W H, Li H L, Chen Z H, Lin X, Xie G Q, Liu X J, Sun S H, Qiu H J. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments[J]. Small, 2019, 15(47): e1904180. |
[72] |
Yang L, Yu G T, Ai X, Yan W S, Duan H L, Chen W, Li X T, Wang T, Zhang C H, Huang X R, Chen J S, Zou X X. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers[J]. Nat. Commun., 2018, 9(1): 5236.
doi: 10.1038/s41467-018-07678-w pmid: 30531797 |
[73] | Shang C Y, Cao C, Yu D Y, Yan Y, Lin Y T, Li H L, Zheng T T, Yan X P, Yu W C, Zhou S M, Zeng J. Electron correlations engineer catalytic activity of pyrochlore iridates for acidic water oxidation[J]. Adv. Mater., 2019, 31(6): e1805104. |
[74] |
Zhang Q, Liang X, Chen H, Yan W S, Shi L, Liu Y P, Li J Y, Zou X X. Identifying key structural subunits and their synergism in low-iridium triple perovskites for oxygen evolution in acidic media[J]. Chem. Mater., 2020, 32(9): 3904-3910.
doi: 10.1021/acs.chemmater.0c00081 URL |
[75] |
Reier T, Pawolek Z, Cherevko S, Bruns M, Jones T, Teschner D, Selve S, Bergmann A, Nong H N, Schlogl R, Mayrhofer K J J, Strasser P. Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER)[J]. J. Am. Chem. Soc., 2015, 137(40): 13031-13040.
doi: 10.1021/jacs.5b07788 pmid: 26355767 |
[76] |
Nong H N, Reier T, Oh H S, Gliech M, Paciok P, Vu T H T, Teschner D, Heggen M, Petkov V, Schlögl R, Jones T, Strasser P. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts[J]. Nat. Catal., 2018, 1(11): 841-851.
doi: 10.1038/s41929-018-0153-y URL |
[77] |
Oh H S, Nong H N, Reier T, Bergmann A, Gliech M, Ferreira de Araujo J, Willinger E, Schlogl R, Teschner D, Strasser P. Electrochemical catalyst-support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction[J]. J. Am. Chem. Soc., 2016, 138(38): 12552-12563.
doi: 10.1021/jacs.6b07199 URL |
[78] |
Wang Z B, Zheng Y R, Chorkendorff I, Nörskov J K. Acid-stable oxides for oxygen electrocatalysis[J]. ACS Energy Lett., 2020, 5(9): 2905-2908.
doi: 10.1021/acsenergylett.0c01625 URL |
[79] |
English J T, Wilkinson D P. The superior electrical conductivity and anodic stability of vanadium-doped Ti4O7[J]. J. Electrochem. Soc., 2021, 168(10): 103509.
doi: 10.1149/1945-7111/ac3200 URL |
[80] |
Zhao S, Stocks A, Rasimick B, More K, Xu H. Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers[J]. J. Electrochem. Soc., 2018, 165(2): F82-F89.
doi: 10.1149/2.0981802jes URL |
[81] |
Zhao S, Stocks A, Rasimick B, More K, Xu H. Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers[J]. J. Electrochem. Soc., 2018, 165(2): F82-F89.
doi: 10.1149/2.0981802jes URL |
[82] |
Faustini M, Giraud M, Jones D, Rozière J, Dupont M, Porter T R, Nowak S, Bahri M, Ersen O, Sanchez C, Boissière C, Tard C, Peron J. Hierarchically structured ultraporous iridium-based materials: a novel catalyst architecture for proton exchange membrane water electrolyzers[J]. Adv. Energy Mater., 2019, 9(4): 1802136.
doi: 10.1002/aenm.201802136 URL |
[83] |
Knoppel J, Mockl M, Escalera-Lopez D, Stojanovski K, Bierling M, Bohm T, Thiele S, Rzepka M, Cherevko S. On the limitations in assessing stability of oxygen evolution catalysts using aqueous model electrochemical cells[J]. Nat. Commun., 2021, 12(1): 2231.
doi: 10.1038/s41467-021-22296-9 pmid: 33850142 |
[84] |
Kim Y T, Lopes P P, Park S A, Lee A Y, Lim J, Lee H, Back S, Jung Y, Danilovic N, Stamenkovic V, Erlebacher J, Snyder J, Markovic N M. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts[J]. Nat. Commun., 2017, 8(1): 1449.
doi: 10.1038/s41467-017-01734-7 URL |
[85] |
Wu G, Zheng X S, Cui P X, Jiang H Y, Wang X Q, Qu Y T, Chen W X, Lin Y, Li H, Han X, Hu Y M, Liu P G, Zhang Q H, Ge J J, Yao Y C, Sun R B, Wu Y, Gu L, Hong X, Li Y D. A general synthesis approach for amorphous noble metal nanosheets[J]. Nat. Commun., 2019, 10(1): 4855.
doi: 10.1038/s41467-019-12859-2 pmid: 31649272 |
[86] |
Gao J J, Xu C Q, Hung S F, Liu W, Cai W Z, Zeng Z P, Jia C M, Chen H M, Xiao H, Li J, Huang Y Q, Liu B. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation[J]. J. Am. Chem. Soc., 2019, 141(7): 3014-3023.
doi: 10.1021/jacs.8b11456 pmid: 30673269 |
[87] | Alia S M, Stariha S, Borup R L. Electrolyzer durability at low catalyst loading and with dynamic operation[J]. J. Electrochem. Soc., 2019, 15(166): F1164-F1172. |
[88] | Pivovar B. H2 new:Hydrogen (H2) from next-generation electrolyzers of water overview[R]. United States: DOE, 2021. |
[1] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[2] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[3] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[4] | 徐能能, 乔锦丽. 锌-空气电池双功能催化剂研究进展[J]. 电化学(中英文), 2020, 26(4): 531-562. |
[5] | 徐希,刘娟,吴华宗,江文杰. 高结晶度硼酸镍纳米棒的制备及其电催化析氧性能研究[J]. 电化学(中英文), 2018, 24(4): 319-323. |
[6] | 曹晓燕, 袁华堂, 周作祥, 张允什. 镍电极在KOH水溶液中析氧行为的研究[J]. 电化学(中英文), 1998, 4(4): 428-433. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||