欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2020, Vol. 26 ›› Issue (6): 815-824.  doi: 10.13208/j.electrochem.200223

• 研究论文 • 上一篇    下一篇

核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究

王学良, 丛媛媛, 邱晨曦, 王盛杰, 秦嘉琪, 宋玉江*()   

  1. 大连理工大学化工学院精细化工国家重点实验室,辽宁 大连 116024
  • 收稿日期:2020-02-24 修回日期:2020-03-27 出版日期:2020-12-28 发布日期:2020-04-15
  • 通讯作者: 宋玉江 E-mail:yjsong@dlut.edu.cn
  • 基金资助:
    国家重点研发计划课题No(2019YFB1504501);大连理工大学重点专项No(DUT19ZD208);大连理工大学重点专项No(DUT20ZD208);中央引导地方专项No(2020JH6/10500021);辽宁省重点研发计划项目No(2020JH2/10100025);大连市重点学科重大项目资助No(2020JJ25CY003)

Core-Shell Structured Ru@PtRu Nanoflower Electrocatalysts toward Alkaline Hydrogen Evolution Reaction

WANG Xue-liang, CONG Yuan-yuan, QIU Chen-xi, WANG Sheng-jie, QIN Jia-qi, SONG Yu-jiang*()   

  1. State Key Laboratory of Fine Chemicals, School of Chemical Engineering,Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2020-02-24 Revised:2020-03-27 Published:2020-12-28 Online:2020-04-15
  • Contact: SONG Yu-jiang E-mail:yjsong@dlut.edu.cn

摘要:

本文通过分步还原Ru、Pt前驱体,制备了以Ru为核、PtRu合金为壳的Ru@Pt0.24Ru纳米花电催化剂,其平均直径为16.5±4.0 nm. 利用高分辨电子显微镜、电感耦合等离子体原子发射光谱和X射线光电子能谱等表征了这种电催化剂的结构和组成. 在1 mol·L -1 KOH水溶液中,核壳结构Ru@Pt0.24Ru/C纳米花氢析出反应的过电位为22 mV(@10 mA·cm -2),耐久性测试后过电位增加至30 mV(@10 mA·cm -2),明显优于商业Pt/C电催化剂(初始值:60 mV@10 mA·cm -2,耐久性测试后:85 mV@10mA·cm -2). 显著提高的电化学活性可能源于核壳结构Ru@Pt0.24Ru纳米花的电子效应和几何效应,耐久性的改善可能源于核壳结构Ru@Pt0.24Ru纳米花结构的稳定性.

关键词: 纳米花, 核壳结构, Ru@Pt0.24Ru, 碱性氢析出反应

Abstract:

Water electrolysis for hydrogen production is beneficial for solving the problem of energy crisis and environmental issues. It is necessary to study highly active and cost-effective catalysts toward hydrogen evolution reaction (HER) to reduce the consumption of noble metals. Herein, we report the synthesis of core-shell structured Ru@Pt0.24Ru nanoflowers electrocatalyst by stepwise reduction of Ru and Pt precursors in the mixture of oleylamine and benzyl alcohol at 160 oC. The average diameter of the resultant Ru@Pt0.24Ru was 16.5±4.0 nm with a bulk atomic ratio between Pt and Ru of 0.24:1 and a surface ratio of 3.3:1 between Pt and Ru. Therefore, we speculate the formation of core-shell structure with Ru as the core and PtRu alloy as the shell. The performance of the electrocatalyst toward alkaline HER was tested in 1.0 mol·L -1 KOH aqueous solution. The Ru@Pt0.24Ru exhibited pronounced alkaline HER activity with a small overpotential of 22 mV at 10 mA·cm -2, a low Tafel slope of 43 mV·dec -1, and a high mass activity of 5.68 A·mg -1Pt+Ru at an overpotential of 100 mV, all largely surpassing commercial Pt/C (60 mV, 101 mV·dec -1, 1.53 A·mg -1Pt). The attained Ru@Pt0.24Ru also held outstanding long-term cycling stability. After 10,000 potential cycles from 0.1 to -0.1 V (vs. RHE), the overpotential increased to 30 mV at 10 mA·cm -2, while increased to 85 mV for Pt/C. The significantly improved electrochemical activity may be derived from the electronic and geometric effects of the electrocatalyst. The improvement of durability may be due to the stability of the flower-like dendritic morphology.

Key words: nanoflowers, core-shell structure, Ru@Pt0.24Ru, alkaline hydrogen evolution reaction

中图分类号: