[1] |
He H N, Wang H Y, Tang Y G, Liu Y N. Current studies of anode materials for sodium-ion battery[J]. Prog. Chem., 2014, 26(4): 572-581.
|
[2] |
Ma S, Jiang M D, Tao P, Song C Y, Wu J B, Wang J, Deng T, Shang W. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Prog. Nat. Sci., 2018, 28(6): 653-666.
doi: 10.1016/j.pnsc.2018.11.002
URL
|
[3] |
Kulova T L, Fateev V N, Seregina E A, Grigoriev A S. A brief review of post-lithium-ion batteries[J]. Int. J. Electrochem. Sci., 2020, 15(8): 7242-7259.
|
[4] |
Chern M Y, Disalvo F J. Synjournal, structure, electric, and magnetic-properties of CaNiN[J]. J. Solid State Chem., 1990, 88(2): 459-464.
doi: 10.1016/0022-4596(90)90242-P
URL
|
[5] |
Springborg M, Albers R C. Charge and dimensionality effects on the properties of CaNiN[J]. Phys. Rev. B, 2004, 69(23): 235115.
doi: 10.1103/PhysRevB.69.235115
URL
|
[6] |
Green M T, Hughbanks T. Electronic-structures of nitrido-metalates — molecular and extended-chain ions[J]. Inorg. Chem., 1993, 32(24): 5611-5615.
doi: 10.1021/ic00076a031
URL
|
[7] |
Stoeva Z, Gomez R, Gordon A G, Allan M, Gregory D H, Hix G B, Titman J J. Fast lithium ion diffusion in the ternary layered nitridometalate LiNiN[J]. J. Am. Chem. Soc., 2004, 126(13): 4066-4067.
doi: 10.1021/ja039603b
URL
|
[8] |
Stoeva Z, Jager B, Gomez R, Messaoudi S, Ben Yahia M, Rocquefelte X, Hix G B, Wolf W, Titman J J, Gautier R, Herzig P, Gregory D H. Crystal chemistry and electronic structure of the metallic lithium ion conductor, LiNiN[J]. J. Am. Chem. Soc., 2007, 129(7): 1912-1920.
doi: 10.1021/ja063208e
URL
|
[9] |
Niewa R, Huang Z L, Schnelle W, Hu Z, Kniep R. Preparation, crystallographic, spectroscopic and magnetic characterization of low-valency nitridometalates Li2[(Li1-x Mx)N] with M = Cu, Ni[J]. Anorg. Allg. Chem., 2003, 629(10): 1778-1786.
|
[10] |
Kanwal S, Rahman G. Defects-driven magnetism in bulk alpha-Li3N[J]. J. Magn. Magn. Mater., 2018, 466: 192-199.
doi: 10.1016/j.jmmm.2018.07.003
URL
|
[11] |
Nishijima M, Kagohashi T, Imanishi M, Takeda Y, Yamamoto O, Kondo S. Synjournal and electrochemical studies of a new anode material, Li3-x CoxN[J]. Solid State Ion., 1996, 83(1-2): 107-111.
doi: 10.1016/0167-2738(95)00221-9
URL
|
[12] |
Shodai T, Okada S, Tobishima S, Yamaki J. Study of Li3-xMxN(M:Co, Ni or Cu) system for use as anode material in lithium rechargeable cells[J]. Solid State Ion., 1996, 86-8(2): 785-789.
|
[13] |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3): 1758-1775.
doi: 10.1103/PhysRevB.59.1758
URL
|
[14] |
Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6(1): 15-50.
doi: 10.1016/0927-0256(96)00008-0
URL
|
[15] |
Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54(16): 11169-11186.
pmid: 9984901
|
[16] |
Blochl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953-17979.
doi: 10.1103/PhysRevB.50.17953
URL
|
[17] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
doi: 10.1103/PhysRevLett.77.3865
URL
pmid: 10062328
|
[18] |
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976, 13(12): 5188-5192.
doi: 10.1103/PhysRevB.13.5188
URL
|
[19] |
Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study[J]. Phys. Rev. B, 1998, 57(3): 1505-1509.
doi: 10.1103/PhysRevB.57.1505
URL
|
[20] |
Rohrbach A, Hafner J, Kresse G. Electronic correlation effects in transition-metal sulfides[J]. J. Phys.: Condes. Matter, 2003, 15(6): 979-996.
doi: 10.1088/0953-8984/15/6/325
URL
|
[21] |
May K J, Kolpak A M. Improved description of perovskite oxide crystal structure and electronic properties using self-consistent Hubbard U corrections from ACBN0[J]. Phys. Rev. B, 2020, 101(16): 165117-165117.
doi: 10.1103/PhysRevB.101.165117
URL
|
[22] |
Bouiadjra O B, Merad G, Raulot J M, Abdelkader H S, Esling C. A comparative study on the high and low symmetric structures of (LaMnO3)n/(LaNiO3)n superlattices by first-principles calculations[J]. J. Magn. Magn. Mater., 2020, 499: 166251.
doi: 10.1016/j.jmmm.2019.166251
URL
|
[23] |
Serdtsev A V, Solodovnikov S F, Medvedeva N I. Sodium diffusion and redox properties of alluaudite Na2+2xM2-x (MoO4)3(M = Fe, Co, Ni) from DFT+U study[J]. Mater. Today Commun., 2020, 22: 100825.
|
[24] |
Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures[J]. Phys. Rev. B, 2008, 78(13): 134106.
doi: 10.1103/PhysRevB.78.134106
URL
|
[25] |
Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. APL Mater., 2013, 1(1): 011002.
doi: 10.1063/1.4812323
URL
|
[26] |
Murnaghan F D. The compressibility of media under extreme pressures[J]. Proc. Natl. Acad. Sci., USA, 1944, 30: 244-247.
doi: 10.1073/pnas.30.9.244
URL
|
[27] |
Cabana J, Stoeva Z, Titman J J, Gregory D H, Palacin M R. Towards new negative electrode materials for Li-ion batteries: Electrochemical properties of LiNiN[J]. Chem. Mater., 2008, 20(5): 1676-1678.
|
[28] |
Hu C H, Yang Y, Zhu Z Z. Structural stability and electronic properties of LiNiN[J]. Solid State Commun., 2010, 150(13-14): 669-674.
doi: 10.1016/j.ssc.2009.12.020
URL
|
[29] |
Wang Y X. Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations[J]. Appl. Phys. Lett., 2007, 91(10): 101904.
doi: 10.1063/1.2780077
URL
|
[30] |
Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Phys. Rev. B, 2007, 76(5): 054115.
doi: 10.1103/PhysRevB.76.054115
URL
|
[31] |
Hou Z F. Elastic properties and electronic structures of antiperovskite-type InNCo3 and InNNi3[J]. Solid State Commun., 2010, 150(39-40): 1874-1879.
doi: 10.1016/j.ssc.2010.07.047
URL
|
[32] |
Voigt W. The textbook of crystal physics[M]. Teubner B G (Ed.), Leipzig und Berlin, 1928.
|
[33] |
Reuss A. Stresses constant in composite, rule of mixtures for compliance components[J]. J. Appl. Math. Mech., 1929, 9(1): 49-58.
|
[34] |
Hill R. The elastic behavior of crystalline aggregate[J]. Proc. Phys. Soc., London, Sect. A, 1952, 65(5): 349-354.
doi: 10.1088/0370-1298/65/5/307
URL
|
[35] |
Seo D K, Kim S H. Nature of Stoner condition for metallic ferromagnetism[J]. J. Comput. Chem., 2008, 29(13): 2172-2176.
doi: 10.1002/jcc.v29:13
URL
|
[36] |
Janak J F. Uniform susceptibilities of metallic elements[J]. Phys. Rev. B, 1977, 16(1): 255-262.
doi: 10.1103/PhysRevB.16.255
URL
|
[37] |
Wu S Q, Cai N L, Zhu Z Z, Yang Y. Ab initio study on the Li deintercalation in ternary lithium nitridocuprate Li2.5Cu0.5N[J]. Electrochim. Acta, 2008, 53(27): 7915-7920.
doi: 10.1016/j.electacta.2008.05.073
URL
|