[1] |
Tao B L, Yule L C, Daviddi E, Bentley C L, Unwin P R. Correlative electrochemical microscopy of Li-ion (De)intercalation at a series of individual LiMn2O4 particles[J]. Angew. Chem. Int. Ed., 2019,58(14):4606-4611.
doi: 10.1002/anie.v58.14
URL
|
[2] |
Sharel P E, Kang M, Wilson P, Meng L C, Perry D, Basile A, Unwin P R. High resolution visualization of the redox activity of Li2O2 in non-aqueous media: conformal layer vs. toroid structure[J]. Chem. Commun., 2018,54(24):3053-3056.
doi: 10.1039/C7CC09957F
URL
|
[3] |
Takahashi Y, Kumatani A, Munakata H, Inomata H, Ito K, Ino K, Shiku H, Unwin P R, Korchev Y E, Kanamura K, Matsue T. Nanoscale visualization of redox activity at lithium-ion battery cathodes[J]. Nat. Commun., 2014,5:5450.
doi: 10.1038/ncomms6450
pmid: 25399818
|
[4] |
Jiang D, Jiang Y Y, Li Z M, Liu T, Wo X, Fang Y M, Tao N J, Wang W, Chen H Y. Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling[J]. J. Am. Chem. Soc., 2016,139(1):186-192.
doi: 10.1021/jacs.6b08923
URL
|
[5] |
Bucher E S, Wightman R M. Electrochemical analysis of neurotransmitters[J]. Annu. Rev. Anal. Chem., 2015,8:239-261.
doi: 10.1146/annurev-anchem-071114-040426
URL
|
[6] |
Zhang J J, Zhou J Y, Pan R R, Jiang D C, Burgess J D, Chen H Y. New frontiers and challenges for single-cell electrochemical analysis[J]. ACS. Sens., 2018,3(2):242-250.
doi: 10.1021/acssensors.7b00711
URL
|
[7] |
Lin T E, Rapino S, Girault H H, Lesch A. Electrochemical imaging of cells and tissues[J]. Chem. Sci., 2018,9(20):4546-4554.
doi: 10.1039/C8SC01035H
URL
|
[8] |
Bentley C L, Kang M, Unwin P R. Nanoscale surface structure-activity in electrochemistry and electrocatalysis[J]. J. Am. Chem. Soc., 2019,141(6):2179-2193.
doi: 10.1021/jacs.8b09828
URL
|
[9] |
Bentley C L, Kang M, Unwin P R. Nanoscale structure dynamics within electrocatalytic materials[J]. J. Am. Chem. Soc., 2017,139(46):16813-16821.
doi: 10.1021/jacs.7b09355
URL
|
[10] |
Kim J, Renault C, Nioradze N, Arroyo-Curras N, Leonard K C, Bard A J. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy[J]. J. Am. Chem. Soc., 2016,13(27):8560-8568.
|
[11] |
Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015[J]. Chem. Rev., 2016,116(22):13234-13278.
doi: 10.1021/acs.chemrev.6b00067
URL
|
[12] |
Kai T, Zoski C G, Bard A J. Scanning electrochemical microscopy at the nanometer level[J]. Chem. Commun., 2018,54(16):1934-1947.
doi: 10.1039/C7CC09777H
URL
|
[13] |
Kang M, Perry D, Bentley C L, West G, Page A, Unwin P R. Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles[J]. ACS Nano, 2017,11(9):9525-9535.
doi: 10.1021/acsnano.7b05435
URL
|
[14] |
Daviddi E, Gonos K L, Colburn A W, Bentley C L, Unwin P R. Scanning electrochemical cell microscopy (SECCM) chronopotentiometry: Development and applications in electroanalysis and electrocatalysis[J]. Anal. Chem., 2019,91(14):9229-9237.
doi: 10.1021/acs.analchem.9b02091
|
[15] |
Audebert P, Miomandre F. Electrofluorochromism: from molecular systems to set-up and display[J]. Chem. Sci., 2013,4(2):575-584.
doi: 10.1039/C2SC21503A
URL
|
[16] |
Sambur J B, Chen T Y, Choudhary E, Chen G, Nissen E J, Thomas E M, Zou N, Chen P. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes[J]. Nature, 2016,530(7588):77-80.
doi: 10.1038/nature16534
URL
|
[17] |
Bouffier L, Doneux T. Coupling electrochemistry with in situ fluorescence (confocal) microscopy[J]. Curr. Opin. Electrochem., 2017,6(1):31-37.
|
[18] |
Zhu M J, Pan J B, Wu Z Q, Gao X Y, Zhao W, Xia X H, Xu J J, Chen H Y. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au-Pt Janus nano-particle[J]. Angew. Chem. Int. Ed., 2018,57(15):4010-4014.
doi: 10.1002/anie.201800706
URL
|
[19] |
Valenti G, Scarabino S, Goudeau B, Lesch A, Jovic M, Villani E, Sentic M, Rapino S, Arbault S, Paolucci F, Sojic N. Single cell electrochemiluminescence imaging: from the proof-of-concept to disposable device-based analysis[J]. J. Am. Chem. Soc., 2017,139(46):16830-16837.
doi: 10.1021/jacs.7b09260
URL
|
[20] |
Voci S, Goudeau B, Valenti G, Lesch A, Jovic M, Rapino S, Paolucci F, Arbault S, Sojic N. Surface-confined electrochemiluminescence microscopy of cell membranes[J]. J. Am. Chem. Soc., 2018,140(44):14753-14760.
doi: 10.1021/jacs.8b08080
URL
|
[21] |
Zhou J Y, Ma G Z, Chen Y, Fang D J, Jiang D C, Chen H Y. Electrochemiluminescence imaging for parallel single-cell analysis of active membrane cholesterol[J]. Anal. Chem., 2015,87(16):8138-8143.
doi: 10.1021/acs.analchem.5b00542
URL
|
[22] |
Guerrette J P, Percival S J, Zhang B. Fluorescence coupling for direct imaging of electrocatalytic heterogeneity[J]. J. Am. Chem. Soc., 2013,135(2):855-861.
doi: 10.1021/ja310401b
URL
|
[23] |
Anderson T J, Defnet P A, Zhang B. Electrochemiluminescence (ECL) - based electrochemical imaging using a massive array of bipolar ultramicroelectrodes[J]. Anal. Chem., 2020,92(9):6748-6755.
doi: 10.1021/acs.analchem.0c00921
URL
|
[24] |
Iwama T, Inoue K Y, Abe H, Matsue T. Chemical imaging using a closed bipolar electrode array[J]. Chem. Lett., 2018,47(7):843-845.
doi: 10.1246/cl.180303
URL
|
[25] |
Iwama T, Inoue K Y, Abe H, Matsue T, Shiku H. Bioimaging using bipolar electrochemical microscopy with improved spatial resolution[J]. Analyst, 2020,145(21):6895-6900.
doi: 10.1039/D0AN00912A
URL
|
[26] |
Qin X, Li Z Q, Zhou Y, Pan J B, Li J, Wang K, Xu J J, Xia X H. Fabrication of high-density and superuniform gold nanoelectrode arrays for electrochemical fluorescence imaging[J]. Anal. Chem., 2020,92(19):13493-13499.
doi: 10.1021/acs.analchem.0c02918
URL
|
[27] |
Hurst S J, Payne E K, Qin L, Mirkin C A. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods[J]. Angew. Chem. Int. Ed., 2006,45(17):2672-2692.
doi: 10.1002/(ISSN)1521-3773
URL
|
[28] |
Peinetti A S, Gilardoni R S, Mizrahi M, Requejo F G, Gonzalez G A, Battaglini F. Numerical simulation of the diffusion processes in nanoelectrode arrays using an axial neighbor symmetry approximation[J]. Anal. Chem., 2016,88(11):5752-5759.
doi: 10.1021/acs.analchem.6b00039
URL
|
[29] |
Zu Y, Bard A J. Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium Tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity[J]. Anal. Chem., 2000,72(14):3223-3232.
doi: 10.1021/ac000199y
URL
|
[30] |
Pan S, Liu J, Hill C M. Observation of local redox events at individual Au nanoparticles using electrogenerated chemiluminescence microscopy[J]. J. Phys. Chem. C, 2015,119(48):27095-27103.
doi: 10.1021/acs.jpcc.5b06829
URL
|
[31] |
Wilson A J, Marchuk K, Willets K A. Imaging electrogenerated chemiluminescence at single gold nanowire electrodes[J]. Nano. Lett., 2015,15(9):6110-6115.
doi: 10.1021/acs.nanolett.5b02383
URL
|
[32] |
Valenti G, Fiorani A, Li H, Sojic N, Paolucci F. Essential role of electrode materials in electrochemiluminescence applications[J]. ChemElectroChem, 2016,3(12):1990-1997.
doi: 10.1002/celc.v3.12
URL
|
[33] |
Li F, Zu Y. Effect of nonionic fluorosurfactant on the electrogenerated chemiluminescence of the tris(2,2'-bipy-ridine)ruthenium(II)/Tri-n-propylamine system: lower oxidation potential and higher emission intensity[J]. Anal. Chem., 2004,76(6):1768-1772.
doi: 10.1021/ac035181c
URL
|
[34] |
Yin H J, Zhao S L, Zhao K, Muqsit A, Tang H J, Chang L, Zhao H J, Gao Y, Tang Z Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity[J]. Nat. Commun., 2015,6:6430.
doi: 10.1038/ncomms7430
URL
|
[35] |
Cheng N, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B, Li R, Sham T K, Liu L M, Botton G A, Sun X L. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nat. Commun., 2016,7:13638.
doi: 10.1038/ncomms13638
URL
|
[36] |
Liu S F, Zhang X, Yu Y M, Zou G Z. A monochromatic electrochemiluminescence sensing strategy for dopamine with dual-stabilizers-capped CdSe quantum dots as emitters[J]. Anal. Chem., 2014,86(5):2784-2788.
doi: 10.1021/ac500046s
URL
|
[37] |
Wei H, Wang E K. Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium[J]. TRAC-Trend Anal. Chem., 2008,27(5):447-459.
doi: 10.1016/j.trac.2008.02.009
URL
|