[1] |
Shi H M, Wen G L, Nie Y, Zhang G H, Duan H G. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion[J]. Nanoscale, 2020,12(9):5261-5285.
URL
pmid: 32091524
|
[2] |
Dai C L, Sun G Q, Hu L Y, Xiao Y K, Zhang Z P, Qu L T. Recent progress in graphene-based electrodes for flexible batteries[J]. InfoMat, 2020,2(3):509-526.
doi: 10.1002/inf2.v2.3
URL
|
[3] |
Luo Y, Wu P C, Li J W, Yang S C, Wu K L, Wu J N, Meng G H, Liu Z Y, Guo X H. Self-supported flexible supercapacitor based on carbon fibers covalently combined with monoaminophthalocyanine[J]. Chem. Eng. J., 2020,391:123535.
doi: 10.1016/j.cej.2019.123535
URL
|
[4] |
Ye J B, Guo L X, Zheng S S, Feng Y J, Zhang T T, Yang Z C, Yuan Q S, Shen G P, Zhang Z. Synjournal of bacterial cellulose based SnO2-PPy nanocomposites as potential flexible, highly conductive material[J]. Mater. Lett., 2019,253:372-376.
doi: 10.1016/j.matlet.2019.06.096
URL
|
[5] |
Pirsa S, Shamusi T, Kia E M. Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles[J]. J. Appl. Polym. Sci., 2018,135(33-34):46617.
doi: 10.1002/app.46617
URL
|
[6] |
Liu R, Ma L N, Huang S, Mei J, Li E Y, Yuan G H. Large areal mass and high scalable and flexible cobalt oxide/graphene/bacterial cellulose electrode for supercapacitors[J]. J. Phys. Chem. C, 2016,120(50):28480-28488.
doi: 10.1021/acs.jpcc.6b10475
URL
|
[7] |
Müller D, Rambo C R, Recouvreux D O S, Porto L M, Barra G M O. Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers[J]. Synth. Met., 2011,161(1-2):106-111.
doi: 10.1016/j.synthmet.2010.11.005
URL
|
[8] |
Wu H, Zhang Y N, Yuan W Y, Zhao Y X, Luo S H, Yuan X W, Zheng L X, Cheng L F. Highly flexible, foldable and stretchable Ni-Co layered double hydroxide/polyaniline/bacterial cellulose electrodes for high-performance all-solid-state supercapacitors[J]. J. Mater. Chem. A, 2018,6(34):16617-16626.
doi: 10.1039/C8TA05673K
URL
|
[9] |
Liu P, Sui Y W, Wei F X, Qi J Q, Meng Q K, Ren Y J, He Y Z. One-step hydrothermal synjournal of CoNi2S4 for hybrid supercapacitor electrodes[J]. Nano, 2019,14(7):1950088.
doi: 10.1142/S1793292019500887
URL
|
[10] |
Li L, Lou Z, Han W, Chen D, Jiang K, Shen G Z. Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes[J]. Adv. Mater. Technol., 2017,2(3):1600282.
doi: 10.1002/admt.201600282
URL
|
[11] |
Peng S, Fan L L, Wei C Z, Liu X H, Zhang H W, Xu W L, Xu J. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes[J]. Carbohydr. Polym., 2017,157:344-352.
URL
pmid: 27987937
|
[12] |
Yang S R(杨实润). Preparation and electrochemical performance of the nickel cobalt sulfide as supercapacitor electrode material[D]. East China University of Science and Technology (华东理工大学), 2018.
|
[13] |
Mao X L, Xu J H, He X, Yang W Y, Yang Y J, Xu L, Zhao Y T, Zhou Y J. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes[J]. Appl. Surf. Sci., 2017,435:1228-1236.
doi: 10.1016/j.apsusc.2017.11.248
URL
|
[14] |
Mykhailiv O, Imierska M, Petelczyc M, Echegoyen L, Plonska-Brzezinska M E. Chemical versus electrochemical synjournal of carbon nano-onion/polypyrrole composites for supercapacitor electrodes[J]. Chem.-Eur. J., 2015,21(15):5783-5793.
doi: 10.1002/chem.201406126
URL
pmid: 25736714
|
[15] |
Wu X M, Lian M. Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel[J]. J. Power Sources, 2017,362:184-191.
doi: 10.1016/j.jpowsour.2017.07.042
URL
|
[16] |
Wang F, Kim H J, Park S K, Kee C D, Kim S J, Oh I K. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network[J]. Compos. Sci. Technol., 2016,128:33-40.
doi: 10.1016/j.compscitech.2016.03.012
URL
|
[17] |
Zhang Y H, Shang Z, Shen M X, Chowdhury S P, Ignaszak A, Sun S H, Ni Y H. Cellulose nanofibers/reduced graphene oxide/polypyrrole aerogel electrodes for high-capacitance flexible all-solid-state supercapacitors[J]. ACS Sustain. Chem. Eng., 2019,7(13):11175-11185.
doi: 10.1021/acssuschemeng.9b00321
URL
|
[18] |
Luo H L, Dong J J, Zhang Y, Li G, Guo R S, Zuo G F, Ye M D, Wang Z R, Yang Z W, Wan Y Z. Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by-layer, in situ, culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors[J]. Chem. Eng. J., 2018,334:1148-1158.
doi: 10.1016/j.cej.2017.11.065
URL
|
[19] |
Qian T, Yu C F, Wu S S, Shen J. A facilely prepared poly-pyrrole-reduced graphene oxide composite with a crumpled surface for high performance supercapacitor electrodes[J]. J. Mater. Chem. A, 2013,1(22):6539-6542.
doi: 10.1039/c3ta11146f
URL
|
[20] |
Lv X D, Li G H, Pang Z Y, Li D W, Lei L, Lü P F, Mushtaq M, Wei Q F. Fabricate BC/Fe3O4@PPy 3D nanofiber film as flexible electrode for supercapacitor application[J]. J. Phys. Chem. Solids, 2018,116:153-160.
doi: 10.1016/j.jpcs.2018.01.012
URL
|
[21] |
Peng S, Xu Q, Fan L L, Wei C Z, Bao H F, Xu W L, Xu J. Flexible polypyrrole/cobalt sulfide/bacterial cellulose composite membranes for supercapacitor application[J]. Synth. Met., 2016,222:285-292.
doi: 10.1016/j.synthmet.2016.11.002
URL
|