[1] Graeme G, Jafar A, Danilovic N, et al. Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides[J]. Energy & Environmental Science, 2016, 9(1): 184-192.
[2] Armaroli N, Balzani V. The future of energy supply: Challenges and opportunities[J]. Angewandte Chemie International Edition ,2007, 46(1/2): 52-66.
[3] Marinescu S C, Winkler J R, Gray H B. Molecular mechanisms of cobalt-catalyzed hydrogen evolution[J]. Proceedings of the National Academy Sciences of the United States of America, 2012, 109(38): 15127-15131.
[4] Yang Y, Fei H L, Ruan G D, et al. Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation[J]. Advanced Materials, 2015, 27(20): 3175-3180.
[5] Carmo M, Fritz D L, Mergel J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38 (12): 4901-4934.
[6] Jin Z Y, Li P P, Huang X, et al. Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution[J]. Journal of Materials Chemistry A, 2014, 2(43): 18593-18599.
[7] Katsounaros I, Cherevko S, Zeradjanin A R, et al. Oxygen electrochemistry as a cornerstone for sustainable energy conversion[J]. Angewandte Chemie International Edition, 2014, 53(1): 102-121.
[8] Frydendal R, Paoli E A, Knudsen B P, et al. Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses[J]. ChemElectroChem, 2014, 1(12): 2075-2081.
[9] Zhou T H, Du Y H, Wang D P, et al. Phosphonate-based metal-organic framework derived Co-P-C hybrid as an efficient electrocatalyst for oxygen evolution reaction[J]. ACS Catalysis, 2017, 7(9): 6000-6007.
[10] Tian J, Morozan A, Sougrati M T, et al. Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: a matter of iron-ligand coordination strength[J]. Angewandte Chemie International Edition, 2013, 52(27): 6867-6870.
[11] Xu K, Chen P Z, Li X L, et al. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation[J]. Journal of American Chemical Society, 2015, 137(12): 4119-4125.
[12] Chen P Z, Xu K, Fang Z W, et al. Metallic CO4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(49): 14710-14714.
[13] Peng Z, Jia D S, Al-Enizi A M, et al. From water oxidation to reduction: homologous Ni-Co based nanowires as complementary water splitting electrocatalysts[J]. Advanced Energy Materials, 2015, 5(9): 1402031.
[14] Zhang S L, Guan B Y, Lou X W. Co-Fe alloy/n-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction[J]. Small, 2019, 15(13): 1805324.
[15] Chen K, Sun Z H, Fang R P, et al. Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707592.
[16] Wang X X, Hwang S Y, Pan Y T, et al. Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction[J]. Nano Letters, 2018, 18(7): 4163-4171.
[17] Li X Z, Fang Y Y, Lin X Q, et al. MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids:extraordinary bi-functional electrocatalysts for OER and ORR[J]. Journal of Materials Chemistry A, 2015, 3(33): 17392-17402.
[18] Zhao Y, Yang L J, Chen S, et al. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes[J]. Journal of American Chemical Society, 2013, 135(4): 1201-1204.
[19] Wang S Y, Iyyamperumal E, Roy A, et al. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction:a synergetic effect by co-doping with boron and nitrogen[J]. Angewandte Chemie International Edition, 2011, 50(49): 11756-11760.
[20] Zhang J T, Zhao Z H, Xia Z H, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology, 2015, 10(5): 444-452.
[21] Aijaz A, Masa J, Rosler C, et al. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode[J]. Angewandte Chemie International Edition, 2016, 55(12): 4087-4091.
[22] Wang R, Cao J Y, Cai S C, et al. MOF@cellulose derived Co-N-C nanowire network as an advanced reversible oxygen electrocatalyst for rechargeable zinc-air batteries[J]. ACS Applied Energy Materials, 2018, 1(3): 1060-1068.
[23] Gadipelli S, Zhao, T T, Shevlin S A, et al. Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt-nitrogen-carbon framework system[J]. Energy & Environmental Science, 2016, 9(5): 1661-1667.
[24] Yuan Y F, Chen F, Ye L W, et al. Construction of Co3O4@TiO2 heterogeneous mesoporous hollow nano-cage-in-nanocage from metal-organic frameworks with enhanced lithium storage properties[J]. Journal of Alloys and Compounds, 2019, 790(3): 814-821.
[25] Xie Z Q, Wang Y. Facile synthesis of MOF-derived Co@CoNx/bamboo-like carbon tubes for efficient electrocatalytic water oxidation[J]. Electrochimica Acta, 2019, 296(5): 372-378. |