[1] Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell[M]. Garland Science, New York, 2002.
[2] Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses[J]. Nature Reviews Immunology, 2009, 9(8): 581-593.
[3] Sudhof T C. The synaptic vesicle cycle: a cascade of proteinprotein interactions[J]. Nature, 1995, 375(6533): 645-653.
[4] Jahn R, Sudhof T C. Synaptic vesicles and exocytosis[J]. Annual Review of Neuroscience, 1994, 17: 219-246.
[5] Macdonald R C, Macdonald R I, Menco B P M, et al. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles[J]. Biochimica Et Biophysica Acta, 1991, 1061(2): 297-303.
[6] Talmon Y, Burns J L, Chestnut M H, et al. Time-resolved cryotransmission electron microscopy[J]. Journal of Electron Microscopy Technique, 1990, 14(1): 6-12.
[7] Hallett F R, Nickel B, Samuels C, et al. Determination of vesicle size distributions by freeze-fracture electron microscopy[J]. Journal of Electron Microscopy Technique, 1991, 17(4): 459-466.
[8] Hallett F R, Watton J, Krygsman P. Vesicle sizing number distributions by dynamic light scattering[J]. Biophysical Journal, 1991, 59(2): 357-362.
[9] Chong C S, Colbow K. Light scattering and turbidity measurements on lipid vesicles[J]. Biochimica Et Biophysica Acta, 1976, 436(2): 260-282.
[10] Sun B Y, Chiu D T. Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection[J]. Analytical Chemistry, 2005, 77(9): 2770-2776.
[11] Coulter W H. Means for counting particles suspended in a fluid[J]. United States Patent, 2656508, 1953.
[12] Bayley H, Martin C R. Resistive-pulse sensingfrom microbes to molecules[J]. Chemical Reviews, 2000, 100(7): 2575-2594.
[13] Deblois R W, Bean C P. Counting and sizing of submicron particles by the resistive pulse technique[J]. Review of Scientific Instruments, 1970, 41(7): 909-916.
[14] Ito T, Sun L, Crooks R M. Simultaneous determination of the size and surface charge of individual nanoparticles using a carbon nanotube-based coulter counter[J]. Analytical Chemistry, 2003, 75(10): 2399-2406.
[15] Ito T, Sun L, Henriquez R R, et al. A carbon nanotube-based coulter nanoparticle counter[J]. Accounts of Chemical Research, 2004, 37(12): 937-945.
[16] Song Y X, Zhang H P, Chon C H, et al. Nanoparticle detection by microfluidic Resistive Pulse Sensor with a submicron sensing gate and dual detecting channels-two stage differential amplifier[J]. Sensors and Actuators B-Chemical, 2011, 155(2): 930-936.
[17] Holden D A, Watkins J J, White H S. Resistive-pulse detection of multilamellar liposomes[J]. Langmuir 2012, 28(19): 7572-7577.
[18] Goyal G, Darvisha A, Kim M J. Use of solid-state nanopores for sensing co-translocational deformation of nano-liposomes[J]. Analyst, 2015, 140(14): 4865-4873.
[19] Chen L Z, He H L, Jin Y D. Counting and dynamic studies of the small unilamellar phospholipid vesicle translocation with single conical glass nanopores[J]. Analytical Chemistry, 2015, 87(1): 522-529.
[20] Hope M J, Bally M B, Webb G, et al. Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential[J]. Biochimica Et Biophysica Acta, 1985, 812(1): 55-65.
[21] Zhang B, Wood M, Lee H. A silica nanochannel and its applications in sensing and molecular transport[J]. Analytical Chemistry, 2009, 81(13): 5541-5548.
[22] Gauthier M A, Luo J, Calvet D, et al. Degree of crosslinking and mechanical properties of crosslinked poly(vinyl alcohol) beads for use in solid-phase organic synthesis[J]. Polymer, 2004, 45(24): 8201-8210.
[23] Lasic D D. Liposomes in gene delivery[M]. CRC Press Inc, Florida, 1997.
[24] Giddings J C. Unified Separation Science[M]. Wiley, New York, 1991. |