[1] Feringa B L. In control of motion: From molecular switches to molecular motors[J]. Accounts of Chemical Research, 2001, 34(6): 504-513. [2] Irie M. Diarylethenes for memories and switches[J]. Chemical Reviews, 2000, 100(5): 1685-1716.[3] Tian H, Yang S J. Recent progresses on diarylethene based photochromic switches[J]. Chemical Society Reviews, 2004, 33(2): 85-97.[4] Jin L M, Li Y N, Ma J, et al. Synthesis of novel thermally reversible photochromic axially chiral spirooxazines[J]. Organic Letters, 2010, 12(15): 3552-3555. [5] Dugave C, Demange L. Cis-trans isomerization of organic molecules and biomolecules: Implications and applications[J]. Chemical Reviews, 2003, 103(7): 2475-2532.[6] Delaire J A, Nakatani K. Linear and nonlinear optical properties of photochromic molecules and materials[J]. Chemical Reviews, 2000, 100(5): 1817-1845.[7] Renth F, Siewertsen R, Temp F. Enhanced photoswitching and ultrafast dynamics in structurally modified photochromic fulgides[J]. International Reviews in Physical Chemistry, 2013, 32(1): 1-38. [8] Collier C P, Mattersteig G, Wong E W, et al. A [2]catenane-based solid state electronically reconfigurable switch[J]. Science, 2000, 289(18): 1172-1175. [9] Zheng C H, Pu S Z, Pang Z Y, et al. Syntheses and photochromism of new isomeric diarylethenes bearing an indole moiety[J]. Dyes and Pigments, 2013, 98(3): 565-574. [10] Heshmat B, Pahlevaninezhad H, Darcie T E. Optical efficiency enhancement methods for terahertz receiving photoconductive switches[J]. Optics & Laser Technology, 2013, 54: 297-302. [11] Coelho P J, Castro M C R, Raposo M M M. Reversible trans-cis photoisomerization of new pyrrolidene heterocyclic imines[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 259: 59-65. [12] Dulic D, van der Molen S J, Kudernac T, et al. One-way optoelectronic switching of photochromic molecules on gold[J]. Physical Review Letters, 2003, 91(20): 207402-1-4. [13] Schenderlein H, Voss A, Stark R W, et al. Preparation and characterization of light-switchable polymer networks attached to solid substrates[J]. Langmuir, 2013, 29(14): 4525-4534.[14] Zhao L Y, Hou Q F, Sui D, et al. Multistate/multifunctional switches based on photochromic Schiff base[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2007, 67(3/4): 1120-1125. [15] Plaquet A, Guillaume M, Champagne B, et al. In silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switches[J]. Physical Chemistry Chemical Physics, 2008, 10(41): 6223-6232. [16] Jankowska J, Rode M F, Sadlej J, et al. Photophysics of schiff bases: Theoretical study of salicylidene methylamine[J]. ChemPhysChem, 2012, 13(18): 4287-4294.[17] Grzegorzek J, Filarowski A, Mielke Z. The photoinduced isomerization and its implication in the photo-dynamical processes in two simple Schiff bases isolated in solid argon[J]. Physical Chemistry Chemical Physics, 2011, 13(37): 16596-16605. [18] Maurer R J, Reuter K. Assessing computationally efficient isomerization dynamics: Delta SCF density-functional theory study of azobenzene molecular switching[J]. The Journal of Chemical Physics, 2011, 135(22): 224303-1-10.[19] Satzger H, Root C, Braun M. Excited-state dynamics of trans- and cis-azobenzene after UV excitation in the ππ* band[J]. The Journal of Physical Chemistry A, 2004, 108(30): 6265-6271.[20] Perrier A, Maurel F, Jacquemin D. Single molecule multiphotochromism with diarylethenes[J]. Accounts of Chemical Research, 2012, 45(8): 1173-1182.[21] Taguchi M, Nakagawa T, Nakashima T, et al. Photochromic and fluorescence switching properties of oxidized triangle terarylenes in solution and in amorphous solid states[J]. Journal of Materials Chemistry, 2011, 21(43): 17425-17432.[22] Miskolczy S, Biczok L. Photochromism of a merocyanine dye bound to sulfonatocalixarenes: effect of pH and the size of macrocycle on the kinetics[J]. The Journal of Physical Chemistry B, 2013, 117(2): 648-653.[23] Villeneuve C H, Michalik F, Chazalviel J N, et al. Quantitative IR readout of fulgimide monolayer switching on Si(111) surfaces[J]. Advanced Materials, 2013, 25(3): 416-421.[24] Jin L M, Li Y N, Ma J, et al. Synthesis of novel thermally reversible photochromic axially chiral spirooxazines[J]. Organic Letters, 2010, 12(15): 3552-3555. [25] Berkovic G, Krongauz V, Weiss V. Spiropyrans and spirooxazines for memories and switches[J]. Chemical Reviews, 2000, 100(5): 1741-1753.[26] Hadjoudis E, Rontoyianni A, Ambroziak K, et al. Photochromism and thermochromism of solid trans-N,N′-bis-(salicylidene)-1,2-cyclohexanediamines and trans-N,N′-bis-(2-hydroxy-naphylidene)-1,2-cyclohexane-diamine[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162(2/3): 521-530.[27] Shinkai S. Molecular switches (Ed.: Feringa B L)//[M], Wiley-VCH, 2001: 281.[28] Irie M. Molecular switches (Ed.: Feringa B L)//[M], Wiley-VCH, 2001: 37.[29] Seminario J M, Politzer P. Molecular density functional theory a tool for chemistry[M]. Elesvier, Amsterdam, 1995. [30] Frisch M J, Trucks G W, Schlege H B, et al. GAUSSIAN 03, Wallingford CT, 2004. [31] Lee C T, Yang W T, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789.[32] Salzner U, Lagowski J B, Pickup P G, et al. Design of low band gap polymers employing density functional theory-hybrid functionals ameliorate band gap problem[J]. Journal of Computational Chemistry, 1997, 18(15): 1943-1953. [33] Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. The Journal of Chemical Physics, 1985, 82(1): 270-284.[34] Wadt W R, Hay P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi[J]. Journal of Chemical Physics, 1985, 82(1): 284-298.[35] Dunning T H, Hay P J. In Schaefer H F. Modern theoretical chemistry(III Ed.)[M]. New York: Plenum Press, 1976: 1-28.[36] Gronbeck H, Curioni A, Andreoni W. Thiols and disulfides on the Au(111) surface: The headgroup-gold interaction[J]. Journal of the American Chemical Society, 2000, 122(16): 3839-3842. [37] Yin X, Liu H M, Zhao J W. Electronic transportation through asymmetrically substituted oligo(phenylene ethynylene)s: Studied by first principles nonequilibrium Green’s function formalism[J]. Journal of Chemical Physics, 2006, 125(9): 094711-1-6. [38] Liu H M, Li P, Zhao J W, et al. Theoretical investigation on molecular rectification on the basis of asymmetric substitution and proton transfer reaction[J]. Journal of Chemical Physics, 2008, 129(22): 224704-1-6. [39] Stokbro K, Taylor J, Brandbyge M. Do Aviram-Ratner diodes rectify?[J]. Journal of the American Chemical Society, 2003, 125(13): 3674-3675.[40] Zhao P, Liu D S, Wang P J, et al. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch[J]. Physica B-Condensed Matter, 2011, 406(4): 895-898. [41] Fan Z Q, Zhang Z H, Ming Q, et al. First-principles study of repeated current switching in a bimolecular device[J]. Computational Materials Science, 2012, 53(1): 294-297. [42] Atomistix ToolKit, QuantumWise A/S, www.quantumwise.com (access 2006).[43] Yaliraki S N, Roitberg A E, Gonzalez C, et al. The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description[J]. The Journal of Chemical Physics, 1999, 111(15): 6997-7002.[44] Hall L E, Reimers J R, Hush N S, et al. Formalism, analytical model, and a priori Green’s-function-based calculations of the current-voltage characteristics of molecular wires[J]. The Journal of Chemical Physics, 2000, 112(3): 1510-1521.[45] Tomfohr J, Sankey O F. Theoretical analysis of electron transport through organic molecules[J]. The Journal of Chemical Physics, 2004, 120(3): 1542-1554.[46] Zhao P, Liu D S, Wang P J, et al. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch[J]. Journal of Physics: Condensed Matter, 2011, 406(4): 895-898. [47] Zhao W K, Yang C L, Wang M S, et al. Effects of electrode orientation on the transport properties of pyridine-terminated dithienylethene light molecule switch under bias[J]. Solid State Communications, 2013, 153(1): 1-7. [48] Datta S. Electronic transport in mesoscopic systems[M]. Cambrideg University Press, New York, 1995. [49] Castro P J, Gomez I, Cossi M, et al. Computational study of the mechanism of the photochemical and thermal ring-opening/closure reactions and solvent dependence in spirooxazines[J]. The Journal of Physical Chemistry A, 2012, 116(31): 8148-8158.[50] Buttiker M. Four-terminal phase-coherent conductance[J]. Physical Review Letters, 1986, 57(14): 1761-1764. [51] Meir Y, Wingreen N S. Landauer formula for the current through an interacting electron region[J]. Physical Review Letters, 1992, 68(16): 2512-2515.[52] Yin X, Li Y W, Zhang Y, et al. Theoretical analysis of geometry-correlated conductivity of molecular wire[J]. Chemical Physics Letters, 2006, 422(1/3): 111-116. [53] Seminario J M, Zacarias A G, Tour J M. Theoretical study of a molecular resonant tunneling diode[J]. Journal of the American Chemical Society, 2000, 122(13): 3015-3020.[54] Hanif M, Lu P, Li M, et al. Synthesis, characterization, electrochemistry and optical properties of a novel phenanthrenequinonealt-dialkylfluorene conjugated copolymer[J]. Polymer International, 2007, 56(12): 1507-1513.[55] Knyazhansky M I, Metelitsa A V, Kletskii M E, et al. The structural transformations and photo-induced processes in salicylidene alkylimines[J]. Journal of Molecular Structure, 2000, 526: 65-79.[56] Zhou Y H, Yuan L Z, Zheng X H. Ab initio study of the transport properties of a light-driven switching molecule azobenzene substituent[J]. Computational Materials Science, 2012, 61: 145-149. [57] B?ckmann M, Doltsinis N L, Marx D. Enhanced photoswitching of bridged azobenzene studied by nonadiabatic ab initio simulation[J]. Journal of Chemical Physics, 2012, 137(22): 22A505-1-10.[58] Siewertsen R, Sch?nborn J B, Hartke B, et al. Superior Z-E and E-Z photoswitching dynamics of dihydrodibenzodiazocine, a bridged azobenzene, by S1(nπ*) excitation at k = 387 and 490 nm[J]. Physical Chemistry Chemical Physics, 2011, 13(3): 1054-1063.[59] Xia C J, Liu D S, Liu H C. Phenylazoimidazole as a possible optical molecular switch: An ab initio study[J]. Optik, 2012, 123(14): 1307-1310.[60] Wolak M A, Thomas C J, Gillespie N B, et al. Tuning the optical properties of fluorinated indolylfulgimides[J]. Journal of Organic Chemistry, 2003, 68(2): 319-326.[61] Zhao P, Wang P J, Zhang Z, et al. Electronic transport properties of a diarylethene-based molecular switch with single-walled carbon nanotube electrodes: The effect of chirality[J]. Solid State Communications, 2009, 149(23/24): 928-931. |