Please wait a minute...
欢迎访问《电化学(中英文)》期刊官方网站,今天是
图/表 详细信息
金属氮化物作为锂硫电池阴极硫骨架材料的研究
熊海基, 朱成威, 邓丁榕, 吴启辉
电化学(中英文)    2025, 31 (2): 2407061-.   DOI:10.61558/2993-074X.3489
摘要   (43 HTML40 PDF(pc) (4698KB)(754)  

由于锂硫电池高理论能量密度(2600 Wh·kg-1)和比容量(1675 mAh·g-1),被认为是集成可再生能源系统用于大规模能量存储的潜在解决方案之一。但由于“穿梭效应”、容量衰减和体积变化等障碍阻碍了锂硫电池的成功商业化。现阶段已提出各种策略以克服技术障碍,本文综述了不同金属氮化物作为高性能锂硫电池阴极宿主材料的应用,总结了不同宿主材料的设计策略,讨论了金属氮化物性质与其电化学性能之间的关系,最后,提出了对金属氮化物设计和发展的合理建议,以及促进未来突破的想法。我们希望本文能够引起更多关于金属氮化物及其衍生物的关注,并进一步促进锂硫电池的电化学性能。


Polar host material Synthesis method Morphology Sulfur loading& (sulfur content in cathode by weight) [mg·cm-2] & [%] Voltage window (vs. Li+) [V] Electrochemical performance (initial capacity {mAh·g-1} and cycles) &decay
Rate claimed (per cycle)
Sulfur infiltration method Ref.
TiN Solid-solid phase separation method Mesoporous sphere 0.6816 1.6-2.8 988(65.2% after 500 cycle) at C/2 & (N/A) Melt-diffusion [53]
TiN-VN@CNFs electrospinning method Multichannel structure of the fibers 5.6 1.7-2.8 1388 at C/10(1110 after 100 cycles at C/5) & 0.051% at 1 C Melt-diffusion [54]
CNTs@TiN-TiO2 atomic layer depositi-on Deposition of TiN layer on the CNT surface 15 1.5-3 1431(1330 after 350 cycles) at C/5 & 0.0056% at 1 C, 0.031% at 2 C Li2S6 and electrolyte (lithium/dissolved polysulfide systems) [80]
TiN Hydrothermal method Hollow and porous nanostructure 70 wt% 1.7-2.7 692 at 5 C (740 after 400 cycles at 1 C) & 0.006% at 1 C Melt-diffusion [82]
TiN Hydrothermal and calcined Hollow porous tubes 73.8 wt% 1.7-2.7 1026 at C/5(above 840 after 450 cycles at C/2) Melt-diffusion [83]
CNT@TiN Mild solvothermal method and a nitriding process Nanoparticles 1 N/A 1175(734 after 100 cycles) at C/5 & 0.19% Melt-diffusion [84]
TMN Taku-san chemical synthesis method 2D arrays of few-nanometer nanocrystals 5.1 N/A 912.8(796.5% after 1000 cycles at 1 C) & 0.013% Melt-diffusion [86]
TiN Heating method Nanostructures 7 1.5-3 1524(358 after 100 cycles) at C/10 & N/A S8 Li2S and electrolyte [87]
TiN Hydrothermal and Heating method Hollow TiN microspheres 60 wt% 1.8-2.8 1218(623.3 after 300 cycles) & N/A Melt-diffusion [88]
VN Hydrothermal method Pea shape nanoparticles, 8 1.5-3 573(N/A) Lithium/dissolved polysulfide systems [77]
VN/G Hydrothermal and annealing method 3D interconnected network 3&(N/A) 1.7-2.8 1471(above 99.5% after 100 cycle) at C/2 & 0.15% Li2S6 and electrolyte (lithium/dissolved polysulfide systems) [72]
VN Hydrothermal and facile nitridation treatment Aerogel nanowires 4 & (40 wt%) 1.8-2.8 1121(836 after 400 cycles) & 0.06% Melt-diffusion [85]
VN molten salt template method Porous structure
70 wt% 1.7-2.8 1050(75% after 100 cycles) at C/5 & 0.059% Melt-diffusion [92]
VN calcination, washing and polyaniline-coating Porous rod-like structure 70 wt% 1.6-2.8 1007(735 after 150 cycles) at 0.5 A/g & N/A Melt-diffusion [93]
p-Fe2N/n-VN PNCF soft template and electrospinning technology Heterostructure 6.5(71 wt%) N/A 1358.2(93% after 300 cycles) at C/10 & N/A Melt-diffusion [90]
VN/M/NC molten salt Template method Small and uniformly dispersed VN particles 70 wt% 1.7-2.8 798(81.5% after 500 cycles) at 1C & 0.036% Melt-diffusion [91]
MVN@C NWs Hydrothermal AND nitridation Mesopores structure 2.7(57.2 wt%) 1.6-3 1040 at 1 C (735 after 200 cycles at 2 C) & N/A Soaking with S/CS2 and Melt-diffusion [93]
MOF-Co4N facile solvent method 2D nitrogen-doped carbon
structure
1(N/A) 1.7-2.8 1425(≈82.5 after 400 cycle) at 1 C & (N/A) Li2S6 and electrolyte (lithium/dissolved polysulfide systems) [62]
Co4N Hydrothermal method Mesoporous sphere 72.3 wt% 1.7-2.7 1659(above 94% after 100 cycle) at C/2 & 0.01% Melt-diffusion [79]
CuCoN0.6/NC electrospinning and nitridation method Necklace-like 2.72 1.7-2.8 1218(85.2% after 100 cycles) at C/10 & 0.076% Li2S6 and electrolyte (lithium/dissolved polysulfide systems) [89]
Mo2N soft templating approach Mesoporous sphere 1.1 1.7-2.8 995(91.9% after 100 cycle) at C/2 &0.081% Melt-diffusion [71]
MoN one-pot ammoniation strategy 3D network structure 3.1 1.7-2.8 1315(990 after 350 cycles) at 1 C & 0.062% Melt-diffusion and annealing [72]
MoN@CMK-5 Hydrothermal method bimodal pore system 70 wt% 1.7-2.8 1582 at 0.1 C (475.8 after 1000 cycles) at 5 C & 0.027% Melt-diffusion [81]
WN Hydrothermal method Face-centered cubic (fcc) structure 8 1.5-3 697(700 after 100 cycles) Lithium/dissolved polysulfide systems [85]
Mo2N Hydrothermal method Mesoporous nano rod shaped porous 8 1.5-3 264(N/A) Lithium/dissolved polysulfide systems [77]
WN self-templating hydrothermal reaction 3D porous hierarchical WN nanobolcks 0.92(52 wt%) 1.7-2.8 N/A (358 after 500 cycles at 2 C) Melt-diffusion [77]
AlN@NCNs Heating, drying, washing, precipitation, drying Crossinked thin nanosheets 70.7 wt% 1.6-2.8 1297 (459.1 after 300 cycles) at 0.2 A/g & N/A Melt-diffusion [59]