欢迎访问《电化学(中英文)》期刊官方网站,今天是
能源电化学

Pd/Ni异结构纳米催化剂的制备及其对甲酸氧化的电催化

  • 任明军 ,
  • 邹亮亮 ,
  • 陈举 ,
  • 袁婷 ,
  • 黄庆红 ,
  • 张海峰 ,
  • 杨辉 ,
  • 封松林
展开
  • 1. 中国科学院上海高等研究院,上海 201210;2. 中国科学院研究生院,北京 100039

收稿日期: 2012-06-08

  修回日期: 2012-09-05

  网络出版日期: 2012-12-28

基金资助

This work was supported by the National Basic Research Program of China (973 Program) (No. 2012CB932800), the Natural Science Foundation of China (No. 21073219), Shanghai Science and Technology Committee (No. 11DZ1200400) and the Knowledge Innovation Engineering of the CAS (No. 12406, 124091231).

Electrocatalytic Oxidation of Formic Acid on Pd/Ni Heterostructured Catalyst

  • Mingjun Ren ,
  • Liangliang Zou ,
  • Ju Chen ,
  • Ting Yuan ,
  • Qinghong Huang ,
  • Haifeng Zhang ,
  • Hui Yang ,
  • Songlin Feng
Expand
  • 1. Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), Shanghai 201210, China; 2. Graduate School of the CAS, Beijing 100039, China

Received date: 2012-06-08

  Revised date: 2012-09-05

  Online published: 2012-12-28

Supported by

This work was supported by the National Basic Research Program of China (973 Program) (No. 2012CB932800), the Natural Science Foundation of China (No. 21073219), Shanghai Science and Technology Committee (No. 11DZ1200400) and the Knowledge Innovation Engineering of the CAS (No. 12406, 124091231).

摘要

通过两步还原法制备了Pd/Ni双金属催化剂.由于金属Pd原子在先行还原的Ni纳米粒子表面的外延生长以及其在Ni表面及Pd表面生长表现出的吉布斯自由能差异,最终导致了异结构Pd/Ni纳米粒子的形成.高分辨电子透射显微镜结果证实了异结构的存在,然而X射线衍射测量表明Pd/Ni纳米粒子具有类似于Pd的面心立方结构.制备的Pd/Ni纳米粒子与同等条件下合成的Pd纳米粒子相比对甲酸氧化呈现了更高的电催化活性,而且电催化稳定性也要明显优于纯Pd纳米粒子,证明Pd/Ni双金属催化剂是可选的直接甲酸燃料电池阳极催化剂.双金属催化剂对甲酸氧化电催化活性和稳定性增强可能是Ni原子的修饰改变了Pd粒子表面配位不饱和原子的电子结构所致.

本文引用格式

任明军 , 邹亮亮 , 陈举 , 袁婷 , 黄庆红 , 张海峰 , 杨辉 , 封松林 . Pd/Ni异结构纳米催化剂的制备及其对甲酸氧化的电催化[J]. 电化学, 2012 , 18(6) : 515 -520 . DOI: 10.61558/2993-074X.2620

Abstract

A Pd/Ni bimetallic nanostructured electrocatalyst was fabricated via a two-step reduction route. Owing to an epitaxial growth of Pd atoms on the surface of Ni nanoparticles, heterostructured Pd/Ni nanocomposites were formed and verified by high resolution transmission electron microscopy combined with energy-dispersion X-ray spectroscopy. X-ray diffraction confirmed that the as-prepared Pd/Ni nanocomposites possessed a single face-centered-cubic (fcc) Pd structure, probably due to a weaker diffraction intensity of metallic Ni and/or overlapping by that of Pd. The intrinsic catalytic activity on the Pd/Ni is higher than that on the Pd. Moreover, the durability of formic acid oxidation on the Pd/Ni was much enhanced over the Pd nanoparticles. The change in electronic structure of the surface coordination unsaturated Pd atoms and the possible dissolution of Ni species from the Pd/Ni heterostructure may account for such an improved durability for formic acid oxidation.

参考文献

[1] Wang J Y, Zhang H X, Jiang K, et al. From HCOOH to CO at Pd electrodes: A surface-enhanced infrared spectroscopy study[J]. Journal of the American Chemical Society, 2011, 133(38): 14876-14879.
[2] Zhang H X, Wang S H, Jiang K, et al. In situ spectroscopic investigation of CO accumulation and poisoning on Pd black surfaces in concentrated HCOOH[J]. Journal of Power Sources, 2012, 199(1): 165-169.
[3] Yu X W, Pickup P G. Mechanistic study of the deactivation of carbon supported Pd during formic acid oxidation[J]. Electrochmistry Communications, 2009, 11(10): 2012-2014.
[4] Ren M J, Kang Y Y, He W, et al. Origin of performance degradation of palladium-based direct formic acid fuel cells[J]. Applied Catalysis B: Environmental, 2011, 104(1/2): 49-53.
[5] Wang X M, Xia Y Y. Electrocatalytic performance of PdCo-C catalyst for formic acid oxidation[J]. Electrochemistry Communications, 2008, 10(10): 1644-1646.
[6] Hann J L, Stafford K M, Morgan R D, et al. Performance of the direct formic acid fuel cell with electrochemically modified palladium-antimony anode catalyst[J]. Electrochimica Acta, 2010, 55(7): 2477-2481.
[7] Hammer B, N?rskov J K. Theoretical surface science and catalysis-calculations and concepts[J]. Advances in Catalysis, 2000, 45: 71-129.
[8] Ruban A, Hammer B, Stoltze P, et al. Surface electronic structure and reactivity of transition and noble metals[J]. Journal of Molecular Catalysis A: Chemical, 1997, 115(3): 421-429.
[9] Bligaard T, N?rskov J K. Ligand effects in heterogeneous catalysis and electrochemistry[J]. Electrochimica Acta, 2007, 52(18): 5512-5516.
[10] Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nature Chemistry, 2010, 2(6): 454-460.
[11] Wang D S, Li Y D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications[J] Advanced Materials, 2011, 23(9): 1044-1060.
[12] Zhang S, Shao Y Y, Yin G P, et al. Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation[J]. Angewandte Chemie International Edition, 2010, 49(12): 2211-2214.
[13] Li R S, Wei Z, Huang T, et al. Ultrasonic-assisted synthesis of Pd-nialloycatalysts supported on multi-walled carbon nanotubes for formic acid electrooxidation[J]. Electrochimica Acta, 2011, 56(19): 6860-6865.
[14] Kibler L A, El-Aziz A M, Hoyer R, et al. Tuning reaction rates by lateral strain in a palladium monolayer[J]. Angewandte Chemie International Edition, 2005, 44(14): 2080-2084.
[15] Oezaslan M, Heggen M, Strasser P. Size-dependent morphology of dealloyed bimetallic catalysts: Linking the nano to the macro scal[J]. Journal of the American Chemical Society, 2012, 134(1): 514-524.
文章导航

/