欢迎访问《电化学(中英文)》期刊官方网站,今天是
能源电化学

碳纳米粒子支撑的钯纳米催化剂在甲酸氧化中的电催化活性

  • 黄洁 ,
  • 周志有 ,
  • 宋洋 ,
  • 康雄武 ,
  • 刘珂 ,
  • 周万城 ,
  • 陈少伟
展开
  • 1. 加利福尼亚大学化学与生物化学系,美国 圣克鲁兹 95064; 2. 西北工业大学凝固技术国家重点实验室,陕西 西安710072

收稿日期: 2012-01-20

  修回日期: 2012-02-01

  网络出版日期: 2012-12-28

基金资助

This work was supported, in part, by the National Science Foundation (CHE–1012256 and DMR–0804049) and by the ACS-Petroleum Research Fund (49137–ND10). J. H. was supported, in part, by a research fellowship from the China Scholarship Council. TEM work was performed as a User Project at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy

Electrocatalytic Activity of Palladium Nanocatalysts Supported on Carbon Nanoparticles in Formic Acid Oxidation

  • Jie Huang ,
  • Zhiyou Zhou ,
  • Yang Song ,
  • Xiongwu Kang ,
  • Ke Liu ,
  • Wancheng Zhou ,
  • Shaowei Chen
Expand
  • 1. Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States; 2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2012-01-20

  Revised date: 2012-02-01

  Online published: 2012-12-28

Supported by

This work was supported, in part, by the National Science Foundation (CHE–1012256 and DMR–0804049) and by the ACS-Petroleum Research Fund (49137–ND10). J. H. was supported, in part, by a research fellowship from the China Scholarship Council. TEM work was performed as a User Project at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy

摘要

采用化学还原法制备了碳纳米粒子支撑的钯纳米结构(Pd-CNP). 透射电镜表征显示在Pd-CNP纳米复合物中,金属Pd呈菜花状结构,粒径约20~30 nm。它们由许多更小的Pd纳米粒子(3~8 nm)组成. 电化学研究表明,虽然Pd-CNP的电化学活性面积比商业Pd黑低40%(可能原因是部分Pd表面被一层碳纳米粒子覆盖),但其对甲酸氧化却表现出更好的电催化活性:质量比活性和面积比活性都比Pd黑高几倍. 催化活性增强的原因可能是碳纳米粒子支撑的Pd纳米结构具有特殊的层次化结构,可以形成更多的活性位,以及表面位更利于反应进行.

本文引用格式

黄洁 , 周志有 , 宋洋 , 康雄武 , 刘珂 , 周万城 , 陈少伟 . 碳纳米粒子支撑的钯纳米催化剂在甲酸氧化中的电催化活性[J]. 电化学, 2012 , 18(6) : 508 -514 . DOI: 10.61558/2993-074X.2619

Abstract

Palladium nanostructures were deposited onto carbon nanoparticle surface by a chemical reduction method. Transmission electron microscopic studies showed that whereas the resulting metal-carbon (Pd-CNP) nanocomposites exhibited a diameter of 20 to 30 nm, the metal components actually showed a cauliflower-like surface morphology that consisted of numerous smaller Pd nanoparticles (3 to 8 nm). Electrochemical studies showed that the effective surface area of the Pd-CNP nanoparticles was about 40% less than that of Pd black, possibly because the Pd nanoparticles were coated with a layer of carbon nanoparticles; yet, the Pd-CNP nanocomposites exhibited marked enhancement of the electrocatalytic activity in formic acid oxidation, as compared to that of Pd black. In fact, the mass- and surface-specific activities of the former were about three times higher than those of the latter. This improvement was likely a result of the enhanced accessibility of the Pd catalyst surface and the formation of abundant active sites of Pd on the carbon nanoparticle surface due to the hierarchical structure of the metal nanocatalysts.
文章导航

/