欢迎访问《电化学(中英文)》期刊官方网站,今天是
表界面电化学

金(111)电极表面浮动磷脂双层膜的原位偏振红外反射光谱研究

  • Zhangfei Su ,
  • Annia Kycia ,
  • J. Jay Leitch ,
  • Jacek Lipkowski
展开
  • 圭尔夫大学化学系,加拿大 安大略省 N1G 2W1, 圭尔夫

收稿日期: 2012-08-25

  修回日期: 2012-10-23

  网络出版日期: 2012-10-28

基金资助

This work was supported by Discovery grant from the Natural Sciences and Engineering Research Council of Canada. J.L. acknowledges support from the Canada Research Chairs (CRC) program.

In situ PM-IRRAS Studies of a Floating Bilayer Lipid Membrane at Au(111) Electrode Surface

  • Zhangfei Su ,
  • Annia Kycia ,
  • J. Jay Leitch ,
  • Jacek Lipkowski
Expand
  • Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Received date: 2012-08-25

  Revised date: 2012-10-23

  Online published: 2012-10-28

Supported by

This work was supported by Discovery grant from the Natural Sciences and Engineering Research Council of Canada. J.L. acknowledges support from the Canada Research Chairs (CRC) program.

摘要

应用电化学原位偏振红外反射光谱法研究了构建于金(111)电极表面的浮动磷脂双层膜。金电极表面先自组装一层巯基葡萄糖单层来增加表面的亲水性,浮动磷脂双层膜通过LB-LS技术构建在巯基葡萄糖单层上.双层膜由双肉豆蔻磷脂酰胆碱(DMPC),胆固醇和神经节苷脂GM1构成.GM1分子中的糖链可以物理吸附在巯基葡萄糖表面,在双层膜和基底间形成一个富含水的隔层.红外光谱表明浮动双层膜中的DMPC分子比传统的支撑双层膜中的DMPC分子有更强的水合作用,证实了双层膜和基底间水层的存在.该浮动双层膜更接近于实际的生物膜体系,并且在金电极表面有宽的电位区间,非常适合于进一步的离子通道蛋白质研究.

本文引用格式

Zhangfei Su , Annia Kycia , J. Jay Leitch , Jacek Lipkowski . 金(111)电极表面浮动磷脂双层膜的原位偏振红外反射光谱研究[J]. 电化学, 2012 , 18(5) : 387 -404 . DOI: 10.61558/2993-074X.2610

Abstract

In situ Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was used to study the structure of a DMPC + cholesterol + GM1 floating bilayer lipid membrane (fBLM) at a Au(111) surface. 1-thio-beta-D-glucose (beta-Tg) was self-assembled onto the Au electrode to increase the overall hydrophilicity of the surface. The fBLM was deposited on the beta-Tg self-assembled monolayer (SAM) using a combination of Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) techniques. The carbohydrate headgroups of the GM1 molecules were physically adsorbed to the beta-Tg SAM forming a water rich cushion between the fBLM and the modified gold substrate. The PM-IRRAS spectra indicate that the DMPC molecules within the fBLM are more hydrated than previous studies involving supported bilayer lipid membranes (sBLM) where the membrane is directly adsorbed onto the surface. The tilt angle of the DMPC acyl chains in the fBLM is smaller than that of the sBLM composed of similar components. The results from this work confirmed that the fBLM is stable over a wide range of electrode potentials and that a water rich region is present between the bilayer and gold electrode surface. The addition of this water region more closely mimics the natural environment of a biological membrane making the fBLM a desirable candidate for future in situ studies involving transmembrane proteins.

参考文献

1. Singer S J, Nicolson G L. The fluid mosaic model of the structure of cell membranes[J]. Science, 1972, 175(4023): 720-731.
2. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell[M], 5th Edition, Garland Science: New York, 2007, pp 617-650.
3. Papahadjopoulos D, Watkins J C, Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals[J]. Biochim. Biophys. Acta, 1967, 135(4): 624-638.
4. Hauser H, Phillips M C, Stubbs M. Ion permeability of phospholipid bilayers[J]. Nature, 1972, 239: 342-344.
5. Nagle J F, Tristram-Nagle S. Structure of lipid bilayers[J]. Biochim. Biophys. Acta, 2000, 1469(3): 159-195.
6. Sackmann E. Supported membranes: scientific and practical applications[J]. Science, 1996, 271(5245): 43-48.
7. Castellana E T, Cremer P S. Solid supported lipid bilayers: from biophysical studies to sensor design[J], Surf. Sci. Rep., 2006, 61(10): 429-444.
8. Mendelsohn R, Mao G, Flach C R. Infrared reflection-absorption spectroscopy: principles and applications to lipid-protein interaction in Langmuir films[J]. Biochim. Biophys. Acta, 2010, 1798(4): 788-800.
9. Lee C S, Bain C D. Raman spectra of planar supported lipid bilayers[J]. Biochim.Biophys. Acta, 2005, 1711(1): 59-71.
10. Lirtsman V, Ziblat R, Golosovsky M, et al. Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth[J]. J. Appl. Phys., 2005, 98(9): 093506.
11. Dabkowska A P, Fragneto G, Hughes A V, et al. Specular Neutron reflectivity studies of the interaction of cytochrome c with supported phosphatidylcholine bilayers doped with phosphotidylserine[J]. Langmuir, 2009, 25(7): 4203-4210.
12. Nomura K, Inaba T, Morigaki K, et al. Interaction of lipopolysaccharide and phospholipid in mixed membranes: solid-state 31P-NMR spectroscopic and microscopic investigations[J]. Biophys. J., 2008, 95(3): 1226-1238.
13. Miller C E, Majewski J, Watkins E B, et al. Probing the local order of single phospholipid membranes using grazing incidence x-ray diffraction[J]. Phys. Rev. Lett., 2008, 100(5): 058103.
14. Tamm L K, McConnell H M. Supported phospholipid bilayers[J]. Biophys. J., 1985, 47(1): 105-113.
15. Tamm L K, Lateral diffusion and fluorescence microscope studies on a monoclonal antibody specifically bound to supported phospholipid bilayers[J]. Biochemistry, 1988, 27(5): 1450-1457.
16. Groves J T, Ulman N, Cremer P S, et al. Substrate-membrane interactions: mechanisms for imposing patterns on a fluid bilayer membrane[J]. Langmuir, 1998, 14 (12): 3347-3350.
17. Kuhner M, Tampe R, Sackmann E. Lipid mono- and bilayer supported on polymer films: composite polymer-lipid films on solid substrates[J]. Biophys. J.,1994, 67(1): 217-226.
18. Guidelli R, Aloisi G, Becucci L, et al. Bioelectrochemistry at metal / water interfaces[J] J. Electroanal. Chem., 2001, 504(1): 1-28.
19. Lang H, Duschl C, Vogel H. A new class of thiolipids for the attachment of lipid bilayers on gold surfaces[J]. Langmuir, 1994, 10 (1): 197-210.
20. Rossi C, Chopineau J. Biomimetic tethered lipid membranes designed for membrane-protein interaction studies[J]. Eur Biophys. J., 2007, 36(8): 955-965.
21. Naumann R, Jonczyk A, Kopp R. et al. Incorporation of membrane proteins in solid-supported lipid layers[J]. Angew. Chem. Int. Ed., 1995, 34(18): 2056-2058.
22. Kycia A H, Wang J P, Merrill A R, et al. Atomic force microscopy studies of a floating-bilayer lipid membrane on a Au(111) surface modified with a hydrophilic monolayer[J]. Langmuir, 2011, 27(17): 10867-10877.
23. Faguy P W, Richmond W N. Real-time polarization modulation infrared spectroscopy applied to the study of water and hydroxide ions at electrode surfaces[J]. J. Electroanal. Chem., 1996, 410(1): 109-113.
24. Barth A. Infrared spectroscopy of proteins[J]. Biochim. Biophys. Acta, 2007, 1767(9): 1073-1101.
25. Vie V, Legardinier S, Chieze L, et al. Specific anchoring modes of two distinct dystrophin rod sub-domains interacting in phospholipid Langmuir films studied by atomic force microscopy and PM-IRRAS[J]. Biochim. Biophys. Acta, 2010, 1798(8): 1503-1511.
26. Brosseau C L, Leitch J, Bin X, et al. Electrochemical and PM-IRRAS a glycolipid-containing biomimetic membrane prepared using Langmuir- Blodgett/Langmuir-Schaefer deposition[J]. Langmuir, 2008, 24(22): 13058-13067.
27. Chen M, Li M, Brosseau C L, et al. AFM Studies of the Effect of Temperature and Electric Field on the Structure of a DMPC-Cholesterol Bilayer Supported on a Au(111) Electrode Surface[J]. Langmuir, 2009, 25(2): 1028-1037.
28. Ohta Y, Yokoyama S, Sakai H, et al. Membrane properties of mixed ganglioside GM1/phosphatidylcholine monolayers[J]. Colloids Surf. B, 2004, 33(3-4): 191-197.
29. Li N, Zamlynny V, Lipkowski J, et al. In situ IR reflectance absorption spectroscopy studies of pyridine adsorption at the Au (110) electrode surface[J]. J. Electroanal. Chem., 2002, 43(524-525): 43-53.
30. Green M J, Barner B J, Corn R M. Real-time sampling electronics for double modulation experiments with Fourier transform infrared spectrometers[J]. Rev. Sci. Instrum., 1991, 62(6): 1426-1430.
31. Buffeteau T, Desbat B, Turlet J M. Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: Experimental procedure and quantitative analysis[J]. Appl. Spectrosc., 1991, 45(3): 380-389.
32. Buffeteau T, Desbat B, Blaudez D, et al. Calibration procedure to derive IRRAS spectra from PM-IRRAS spectra[J]. Appl. Spectrosc., 2000, 54(11): 1646-1650.
33. Zamlynny V, Lipkowski J. Diffraction and Spectroscopic Methods in Electrochemistry[M], Alkire R, Kolb D M, Lipkowski J, et al. Ed., Wiley-VCH: Weinheim, 2006, Vol. 9, pp. 315-376.
34. Zamlynny V. PhD thesis [D], University of Guelph, 2002.
35. Palik E. Ed. Handbook of Optical Constants of Solids II[M], Academic Press: San Diego, 1998.
36. Bertie J E, Ahmed M K, Eysel H H. Infrared intensities of liquids. 5. Optical and dielectric constants, integrated intensities, and dipole moment derivatives of H2O and D2O at 22℃[J]. J. Phys. Chem., 1989, 93(6): 2210-2218.
37. Lipert R J, Lamp B D, Porter M D. Modern Techniques in Applied Molecular Spectroscopy[M], Mirabella F M. Ed., John Wiley & Sons, Inc.: New York, 1998, pp 83-126.
38. Leonard A, Escrive C, Laguerre M, et al. Location of cholesterol in DMPC membranes. A comparative study by neutron diffraction and molecular mechanics simulation[J]. Langmuir, 2001, 17(6): 2019-2030.
39. Li M, Chen M, Sheepwash E, et al. AFM studies of solid-supported lipid bilayers formed at a Au(111) electrode surface using vesicle fusion and a combination of Langmuir-Blodgett and Langmuir-Schaefer techniques[J]. Langmuir, 2008, 24(18): 10313-10323.
40. Kycia A H, Sek S, Su Z F, et al. Electrochemical and STM Studies of 1-thio-β-d-glucose self-assembled on a Au(111) electrode surface[J]. Langmuir, 2011, 27(21): 13383-13389.
41. Raguse B, Braach-Maksvytis V, Cornell B A, et al. Tethered lipid bilayer membranes: formation and ionic reservoir characterization[J]. Langmuir, 1998, 14(3): 648-659.
42. Burgess I, Szymanski G, L, M, et al. Electric field-driven transformations of a supported model biological membrane-an electrochemical and neutron reflectivity study[J]. Biophys. J., 2004, 86(3): 1763-1776.
43. Gennis R B. Biomembranes, Molecular Structure and Function[M], 1989, Springer-Verlag, New York.
44. Liang C Y, Lytton M R. Infrared spectra of crystalline and stereoregular polymers[J]. J. Polymer Sci., 1962, 61(172): S45-S48.
45. Lee D C, Durrani, A A, Chapman D. A difference infrared spectroscopic study of gramicidin A, alamethicin and bacteriorhodopsin in perdeuterated dimyristoylphosphatidylcholine[J]. Biochim. Biophys. Acta, 1984, 769(1): 49-65.
46. Brosseau C L, Bin X, Roscoe S G, et al. Electrochemical and PM-IRRAS characterization of DMPC + cholesterol bilayers prepared using Langmuir-Blodgett/Langmuir-Schaefer deposition[J] J. Electroanal. Chem., 2008, 621(2): 222-228.
47. Nabet A, Auger M, Pezolet M. Investigation of the temperature behavior of the bands due to the methylene stretching vibrations of phospholipid acyl chains by two-dimensional infrared correlation spectroscopy[J]. Appl. Spectrosc., 2000, 54(7): 948-955.
48. Allara D L, Swalen J D. An infrared reflection spectroscopy study of oriented cadmium arachidate monolayer films on evaporated silver[J]. J. Phys. Chem., 1982, 86(14): 2700-2704.
49. Allara D L, Nuzzo R G. Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface[J]. Langmuir, 1985, 1(1): 45-52.
50. Bin X, Zawisza I, Lipkowski J. Electrochemical and PM-IRRAS studies of the effect of the static electric field on the structure of the DMPC bilayer supported at a Au(111) electrode surface[J]. Langmuir, 2005, 21(1): 330-347.
51. Zawisza I, Bin X, Lipkowski J. Potential-Driven structural changes in Langmuir-Blodgett DMPC bilayers determined by in situ spectroelectrochemical PM IRRAS[J]. Langmuir, 2007, 23(9): 5180-5194.
52. Umemura J, Kamata T, Takenaka T. Quantitative evaluation of molecular orientation in thin Langmuir-Blodgett films by FT-IR transmission and reflection-absorption spectroscopy[J]. J. Phys. Chem., 1990, 94(1): 62-67.
53. Hauser H, Pascher I, Pearson R H, et al. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine[J]. Biochim. Biophys. Acta, 1981, 650(1): 21-51.
54. Aussenac F, Laguerre M, Schmitter J M, et al. Detailed structure and dynamics of bicelle phospholipids using selectively deuterated and perdeuterated labels. 2H NMR and molecular mechanics study[J]. Langmuir, 2003, 19(25): 10468-10479.
55. Lewis R N A H, McElhaney R N. Components of the carbonyl stretching band in the infrared spectra of hydrated 1, 2-diacylglycerolipid bilayers: a reevaluation[J]. Biophys. J., 1994, 67(6): 2367-2375.
56. Fringeli U P. The structure of lipids and proteins studied by attenuated total reflection (ATR) infrared spectroscopy. II. Oriented layers of a homologous series: phosphatidylethanolamine to phosphatidylcholine[J]. Naturforsch., 1977, 32(1-2): 20-45.
57. Fringeli U P, Gunthard H H. Molecular Biology, Biochemistry and Biophysics[M], Grell E., Ed., Springer Verlag: Berlin, 1981, pp 270-332.
58. Fringeli U P. A new crystalline phase of L-alpha-dipalmitoyl phosphatidylcholine monohydrate[J]. Biophys. J., 1981, 34(2): 173-1887.
59. Hubner W, Blume A. Interactions at the lipid–water interface[J]. Chem. Phys. Lipids, 1998, 96(1-2): 99-123.
文章导航

/