[1] Attard G S, Bartlett P N, Coleman N R B, et al. Mesoporous platinum films from lyotropic liquid crystalline phases[J]. Science, 1997, 278(5339): 838-840.
[2] Evans S A G, Elliott J M, Andrews L M, et al. Detection of hydrogen peroxide at mesoporous platinum microelectrodes[J]. Analytical Chemistry, 2002, 74(6): 1322-1326.
[3] Chen W, Cai S, Ren Q Q, et al. Recent advances in electrochemical sensing for hydrogen peroxide: A review[J]. Analyst, 2012, 137(1): 49-58.
[4] Welch C M, Banks C E, Simm A O, et al. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide[J]. Analytical and Bioanalytical Chemistry, 2005, 382(1): 12-21.
[5] Prodromidis M I, Karayannis M I. Enzyme based amperometric biosensors for food analysis[J]. Electroanalysis, 2002, 14(4): 241-261.
[6] Li X Z, Liu H S. Development of an E-H2O2/TiO2 photoelectrocatalytic oxidation system for water and wastewater treatment[J]. Environmental Science & Technology, 2005, 39(12): 4614-4620.
[7] Armstrong F A, Wilson G S. Recent developments in faradaic bioelectrochemistry[J]. Electrochimica Acta, 2000, 45(15/16): 2623-2645.
[8] Nowall W B, Kuhr W G. Detection of hydrogen peroxide and other molecules of biological importance at an electrocatalytic surface on a carbon fiber microelectrode[J]. Electroanalysis, 1997, 9(2): 102-109.
[9] Aoki K, Ishida M, Tokuda K, et al. Electrode-kinetics of the oxidation of hydrogen peroxide at pretreated glassy carbon and carbon fiber electrodes[J]. Journal of Electroanalytical Chemistry, 1988, 251(1): 63-71.
[10] Prabhu V G, Zarapkar L R, Dhaneshwar R G. Electrochemical studies of hydrogen peroxide at a platinum disc electrode[J]. Electrochimica Acta, 1981, 26(6): 725-729.
[11] Liu H Y, Ying T L, Sun K, et al. Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode[J]. Analytica Chimica Acta, 1997, 344(3): 187-199.
[12] Horrocks B R, Schmidtke D, Heller A, et al. Scanning electrochemical microscopy. 24. Enzyme ultramicroelectrodes for the measurement of hydrogen peroxide at surfaces[J]. Analytical Chemistry, 1993, 65(24): 3605-3614.
[13] Ruzgas T, Csoregi E, Emneus J, et al. Peroxidase-modified electrodes: Fundamentals and application[J]. Analytica Chimica Acta, 1996, 330(2/3): 123-138.
[14] Karyakin A A. Prussian Blue and its analogues: Electrochemistry and analytical applications[J]. Electroanalysis, 2001, 13(10): 813-819.
[15] E. N. K. Wallace, in PhD thesis, University of Southampton, 1997.
[16] D. A. Cook, in PhD thesis, University of Southampton, 2005.
[17] Zhang Y, Wilson G S. Electrochemical oxidation of H2O2 on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H2O2-based biosensors[J]. Journal of Electroanalytical Chemistry, 1993, 345(1/2): 253-271.
[18] Gorton L. A carbon electrode sputtered with palladium and gold for the amperometric detection of hydrogen peroxide[J]. Analytica Chimica Acta, 1985, 178(2): 247-253.
[19] Johnston D A, Cardosi M F, Vaughan D H. The electrochemistry of hydrogen peroxide on evaporated gold/palladium composite electrodes - manufacture and chemical characterization[J]. Electroanalysis, 1995, 7(6): 520-526.
[20] Hall S B, Khudaish E A, Hart A L. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part 1. An adsorption-controlled mechanism[J]. Electrochimica Acta, 1998, 43(5/6): 579-588.
[21] Hall S B, Khudaish E A, Hart A L. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: Effect of potential[J]. Electrochimica Acta, 1998, 43(14/15): 2015-2024.
[22] Hall S B, Khudaish E A, Hart A L. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: Effect of temperature[J]. Electrochimica Acta, 1999, 44(14): 2455-2462.
[23] Hall S B, Khudaish E A, Hart A L. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: Phosphate buffer dependence[J]. Electrochimica Acta, 1999, 44(25): 4573-4582.
[24] Hall S B, Khudaish E A, Hart A L. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: Inhibition by chloride[J]. Electrochimica Acta, 2000, 45(21): 3573-3579.
[25] Elliott J M, Birkin P R, Bartlett P N, et al. Platinum microelectrodes with unique high surface areas[J]. Langmuir, 1999, 15(22): 7411-7415.
[26] Han J H, Boo H, Park S, et al. Electrochemical oxidation of hydrogen peroxide at nanoporous platinum electrodes and the application to glutamate microsensor[J]. Electrochimica Acta, 2006, 52(4): 1788-1791.
[27] Miscoria S A, Barrera G D, Rivas G A. Glucose biosensors based on the immobilization of glucose oxidase and polytyramine on rhodinized glassy carbon and screen printed electrodes[J]. Sensors and Actuators B-Chemical, 2006, 115(1): 205-211.
[28] Rodríguez M C, Rivas G A. An enzymatic glucose biosensor based on the codeposition of rhodium, iridium, and glucose oxidase onto a glassy carbon transducer[J]. Analytical Letters, 2001, 34(11): 1829-1840.
[29] Bartlett P N, Marwan J. Preparation and characterization of H-1-e rhodium films[J]. Microporous and Mesoporous Materials, 2003, 62(1/2): 73-79.
[30] Vogel A I, Bassett J. Vogel's textbook of quantitative inorganic analysis: Including elementary instrumental analysis[M]. English Language Book Society, 1986.
[31] Jerkiewicz G, Borodzinski J J. Studies of formation of very thin oxide-films on polycrystalline rhodium electrodes - application of the Mott-Cabrera theory[J]. Langmuir, 1993, 9(8): 2202-2209.
[32] Jerkiewicz G, Borodzinski J J. Relation between the surface-states of oxide-films at Rh electrodes and kinetics of the oxygen evolution reaction[J]. Journal of The Chemical Society-Faraday Transactions, 1994, 90(24): 3669-3675.
[33] Peuckert M. A comparison of the thermally and electrochemically prepared oxidation adlayers on rhodium - chemical nature and thermal stability[J]. Surface Science, 1984, 141(2/3), 500-514.
[34] Florit M I, Bolzan A E, Arvia A J. Reactions involving H, OH and O species on rhodium in H2SO4?12H2O and HClO4?5.5H2O in the range 198-298 K[J]. Journal of Electroanalytical Chemistry, 1995, 394(1/2): 253-262.
[35] Katsounaros I, Schneider W B, Meier J C, et al. Hydrogen peroxide electrochemistry on platinum: Towards understanding the oxygen reduction reaction mechanism[J]. Physical Chemistry Chemical Physics, 2012, 14(20): 7384-7391.
[36] Vanstroebiezen S A M, Everaerts F M, Janssen L J J, et al. Diffusion coefficients of oxygen, hydrogen peroxide and glucose in a hydrogel[J]. Analytica Chimica Acta, 1993, 273(1/2): 553-560.
[37] Amatore C. Theoretical trends of diffusion and reaction into tubular nano- and mesoporous structures: General physicochemical and physicomathematical modeling[J]. Chemistry-A European Journal, 2008, 14(18): 5449-5464.
[38] Amatore C, Oleinick A, Klymenko O V, et al. Theory and simulation of diffusion-reaction into nano- and mesoporous structures. Experimental application to sequestration of mercury(II)[J]. Analytical Chemistry, 2008, 80(9): 3229-3243.
[39] Albery W J, Cass A E G, Shu Z X. Inhibited enzyme electrodes. 1. Theoretical model[J]. Biosensors & Bioelectronics, 1990, 5(5): 367-378.
[40] Albery W J, Cass A E G, Shu Z X. Inhibited enzyme electrodes.2. The kinetics of the cytochrome-oxidase system[J]. Biosensors & Bioelectronics, 1990, 5(5): 379-395.
[41] Albery W J, Cass A E G, Mangold B P, et al. Inhibited enzyme electrodes. 3. A sensor for low-levels of H2S and HCN[J]. Biosensors & Bioelectronics, 1990, 5(5): 397-413.
[42] Bartlett P N, Birkin P R, Wallace E N K. Oxidation of ?-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes[J]. Journal of the Chemical Society-Faraday Transactions, 1997, 93(10): 1951-1960.
[43] Bartlett P N, Simon E. Poly(aniline)-poly(acrylate) composite films as modified electrodes for the oxidation of NADH[J]. Physical Chemistry Chemical Physics, 2000, 2(11): 2599-2606.
[44] Bartlett P N, Wallace E N K. The oxidation of ?-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes Part II. Kinetics of reaction at poly(aniline)-poly(styrenesulfonate) composites[J]. Journal of Electroanalytical Chemistry, 2000, 486(1): 23-31.
[45] Kicela A, Daniele S. Platinum black coated microdisk electrodes for the determination of high concentrations of hydrogen peroxide in phosphate buffer solutions[J]. Talanta, 2006, 68(5): 1632-1639.