欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

基于BCNTs/GC电极的鸟嘌呤与腺嘌呤电化学行为及其同时检测

  • 夏雅淋 ,
  • 邓春艳 ,
  • 向娟
展开
  • 1. 中南大学 有色金属资源化学教育部重点实验室,化学化工学院,湖南 长沙410083;2. 湖南大学 化学生物传感与计量学国家重点实验室,化学化工学院,湖南 长沙410082

收稿日期: 2012-03-15

  修回日期: 2012-04-15

  网络出版日期: 2012-04-20

基金资助

国家自然科学基金项目(No. 21005090)和湖南大学化学生物传感与计量学国家重点实验室开放基金资助

Electrochemical Sensing of Guanine and Adenine Based on the Boron-doped Carbon Nanotubes Modified Electrode

  • XIA Ya-Lin ,
  • DENG Chun-Yan ,
  • XIANG Juan
Expand
  • 1. Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha 410083, China; 2. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

Received date: 2012-03-15

  Revised date: 2012-04-15

  Online published: 2012-04-20

摘要

利用掺硼碳纳米管(BCNTs)/GC电极研究了鸟嘌呤(G)和腺嘌呤(A)的电化学氧化行为. 与GC和CNTs/GC电极相比,BCNTs/GC电极具有更强的电催化活性,且响应电流明显增加. 两混合样品在BCNTs/GC电极上的氧化峰间隔较大,可实现对A和G的同时检测.

本文引用格式

夏雅淋 , 邓春艳 , 向娟 . 基于BCNTs/GC电极的鸟嘌呤与腺嘌呤电化学行为及其同时检测[J]. 电化学, 2012 , 18(4) : 365 -370 . DOI: 10.61558/2993-074X.2932

Abstract

In this work, the boron-doped carbon nanotubes (BCNTs) modified glassy carbon (GC) electrode was simply fabricated, and the electrochemical oxidation behaviors of guanine and adenine at the BCNTs/GC electrode were investigated. Compared with the bare GC and CNTs/GC electrodes, the BCNTs-modified electrode exhibited extraordinary electrocatalytic activity towards the oxidations of guanine and adenine as indicated by the obvious increase in current responses. Moreover, the peak separation between guanine and adenine was large enough for their potential recognition in mixture without any separation or pretreatment. Therefore, the simultaneous determination of guanine and adenine was successfully achieved. The BCNTs/GC electrode showed high sensitivity, wide linear range and low detection limit for the electrochemical determination of guanine and adenine. The possibility of the BCNTs/GC electrode for the determination of guanine and adenine in calf thymus DNA has also been evaluated. The BCNTs/GC electrode has advantages of excellent catalytic activity, selectivity and simplicity, which play a potential role in the development of the related DNA analysis.

参考文献

[1] Wang Z H, Xiao S F, Chen Y. ?-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine[J]. Journal of Electroanalytical Chemistry, 2006, 589(2): 237-242.
[2] Brett A M O, Matysik F M. Voltammetric and sonovoltammetric studies on the oxidation of thymine and cytosine at a glassy carbon electrode[J]. Journal of Electroanalytical Chemistry, 1997, 429(1): 95-99.
[3] Wang W P, Zhou L, Wang S M. Rapid and simple determination of adenine and guanine in DNA extract by micellar electrokinetic chromatography with indirect laser-induced fluorescence detection[J]. Talanta, 2007, 74(4): 1050-1055.
[4] Todd B, Zhao J, Fleet G. HPLC measurement of guanine for the determination of nucleic acid (RNA) in yeasts[J]. Journal of Microbiology Methods, 1995, 22(1): 1-10.
[5] Xu D K, Hua L, Chen H Y. Determination of purine bases by capillary zone electrophoresis with wall-jet amperometric detection[J]. Analytical Chimica Acta, 1996, 335(1/2): 95-101.
[6] Tang C, Yogeswaran U, Chen S M. Simultaneous determination of adenine, guanine and thymine at multi-walled carbon nanotubes incorporated with poly(new fuchsin) composite film[J]. Analytical Chimica Acta, 2009, 636(1): 19-27.
[7] Wang J. Electrochemical nucleic acid biosensors[J]. Analytical Chimica Acta, 2002, 469(1): 63-71.
[8] Fan Y, Huang K J, Niu D J, et al. TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine[J]. Electrochimica Acta, 2011, 56(5): 4685-4690.
[9] Shen Q, Wang X M. Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode[J]. Journal of Electroanalytical Chemistry, 2009, 632(1/2) 149-153.
[10] Yin H S, Zhou Y L, Ma Q, et al. Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination[J]. Process Biochemistry, 2010, 45(10): 1707-1712.
[11] Ferancová A, Rengaraj S, Kim Y, et al. Electrochemical determination of guanine and adenine by CdS microspheres modified electrode and evaluation of damage to DNA purine bases by UV radiation[J]. Biosensors and Bioelectronics, 2010, 26(2): 314-320.
[12] Jang J W, Lee C E, Lyu S C, et al. Nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes[J]. Applied Physical Letter, 2004, 84(15): 2877-2879.
[13] Lao J Y, Li W Z, Wen J G, et al. Boron carbide nanolumps on carbon nanotubes[J]. Applied Physical Letter, 2002, 80(3): 500-502.
[14] Deng C Y, Chen J H, Wang M D, et al. A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode[J]. Biosensors and Bioelectronics, 2009, 24(7): 2091-2094.
[15] Deng C Y, Chen J H, Chen X L, et al. Boron-doped carbon nanotubes modified electrode for electroanalysis of NADH[J]. Electrochemistry Communications, 2008, 10, 907-909.
[16] Chen X L, Chen J H, Deng C Y, et al. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode[J]. Talanta, 2008, 76(4): 763-767.
[17] Deng C Y, Chen J H, Chen X L, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode[J]. Biosensors and Bioelectronics, 2008, 23(8): 1272-1277.
[18] Han W Q, Bando Y, Kurashima K J, et al. Boron-doped carbon nanotubes prepared through a substitution reaction[J]. Chemical Physical Letter, 1999, 299(5): 368-373.
[19] Davidson J N. The biochemistry of the nucleic acids[M]. 7th ed. Norfolk: Cox & Nyman, 1972.
文章导航

/