欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学电源近期研究专辑(武汉大学 杨汉西教授主编)

纳米MnO2的制备及其电化学性能研究

  • 吴雯 ,
  • 周丹丹 ,
  • 侯孟炎 ,
  • 夏永姚
展开
  • 复旦大学 分子催化与功能材料上海市重点实验室,化学系,新能源研究院,上海 200433

收稿日期: 2011-11-19

  修回日期: 2012-02-24

  网络出版日期: 2012-02-29

基金资助

国家自然科学基金重点项目(No. 20633040)和纳米重大科学研究计划(No. 2011CB935904)资助

Preparation and Electrochemical Performance of Nanostructured MnO2 Materials

  • WU Wen ,
  • ZHOU Dan-Dan ,
  • HOU Meng-Yan ,
  • XIA Yong-Yao
Expand
  • Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Department of Chemistry, Fudan University, Shanghai 200433, China

Received date: 2011-11-19

  Revised date: 2012-02-24

  Online published: 2012-02-29

摘要

加入不同浓度的十二烷基磺酸钠表面活性剂(SDS)改变微乳液溶液介质,用苯胺还原高锰酸钾,制备了不同颗粒大小的纳米片状MnO2材料. 采用X射线粉末衍射、氮吸附比表面测试和扫描电镜及透射电镜表征观察合成材料. 电化学测试表明,0.2 mol•L-1 SDS所合成的纳米MnO2比表面约为228.2 m2•g-1, 在1 mol•L-1 Li2SO4电解液中,该电极比电容达到237 F•g -1(0.1 A•g-1),350 ºC煅烧MnO2电极还可发生可逆Li+嵌脱反应增加其比电容.

本文引用格式

吴雯 , 周丹丹 , 侯孟炎 , 夏永姚 . 纳米MnO2的制备及其电化学性能研究[J]. 电化学, 2012 , 18(4) : 295 -300 . DOI: 10.61558/2993-074X.2919

Abstract

Nanostructured MnO2 materials were prepared in a micro-emulsion medium using sodium dodecyl sulfate (SDS)as a surfactant by a redox reaction between potassium permanganate and aniline. The morphologies of the obtained MnO2 were critically dependent on the concentrations of SDS. The particle sizes varied with the change in the micro-emulsion medium. The optimized properties of MnO2 material obtained with the surfactant concentration of 0.2 mol.L-1 had a specific surface area of 228.2 m2.g-1, and delivered a specific capacitance of 237 F.g -1 in 1 mol.L-1 Li2SO4. Additionally, a reversible Li-ion intercalation reaction occurred in the MnO2 calcined at 350 oC.

参考文献

[1] Srinivasan V, Weinder J W. Studies on the capacitance of nickel oxide films: Effect of heating temperature and electrolyte concentration[J]. Journal of the Electrochemical Society, 2000, 147(3): 880-885.
[2] Lin C, Ritter J A, Popov B N. Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors[J]. Journal of the Electrochemical Society, 1998, 145(12): 4097-4103.
[3] Hu C C, Tsou T W. The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies[J]. Journal of Power Sources, 2003(1), 115: 179-186.
[4] Wu M Q, Snook G A, Chen G Z, et al. Redox deposition of manganese oxide on graphite for supercapacitors[J]. Electrochemistry Communications, 2004, 6(5): 499-504.
[5] Reddy R N, Reddy R G. Sol-gel MnO2 as an electrode material for electrochemical capacitors[J]. Journal of Power Sources, 2003, 124(1): 330-337.
[6] Toupin M, Brousse T, Belanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chemistery of Materials, 2004, 16(16): 3184-3190.
[7] Zheng J P, Jow T R. A new charge storage mechanism for electrochemical capacitors[J]. Journal of the Electrochemical Society, 1995, 142(1): L6-L8.
[8] Subramanian V, Zhu H W, Vajtai R, et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures[J]. Journal of Physical Chemistry B, 2005, 109(43): 20207-20214.
[9] Long J W, Young A L, Rolison D R. Spectroelectrochemical characterization of nanostructured mesoporous manganese oxide in aqueous electrolytes[J]. Journal of the Electrochemical Society, 2003, 150(9): A1161-A1165.
[10] Moore T E, Ellis M, Selwood P W. Solid oxides and hydroxides of manganese[J]. Journal of the American Chemical Society, 1950, 72(2): 856-866.
[11] Pang S C, Anderson M A, Chapman T W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J]. Journal of the Electrochemical Society, 2000, 147(2): 444-450.
文章导航

/