欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学电源近期研究专辑(武汉大学 杨汉西教授主编)

LiFePO4电极放电曲线的阻抗模拟

  • 王铭 ,
  • 李建军 ,
  • 何向明 ,
  • 白鹏 ,
  • 吴扞 ,
  • 万春荣 ,
  • 田光宇
展开
  • 1. 清华大学核能与新能源技术研究院,北京100084; 2. 清华大学汽车工程系,北京100084; 3. 台湾立凯电能科技股份有限公司,台湾 桃园33068

收稿日期: 2011-11-24

  修回日期: 2012-01-19

  网络出版日期: 2012-02-01

基金资助

国家973计划(No. 2011CB935902,No. 2011CB711202)、科技部国际合作(No. 2010DFA72760)和清华大学自主科研计划(No. 2010THZ08116,No. 2011THZ08139,No. 2011THZ01004)资助

Discharge Curve Fitting of LiFePO4 Based on Impedance Model

  • WANG Ming ,
  • LI Jian-Jun ,
  • HE Xiang-Ming ,
  • BAI Peng ,
  • WU Gan ,
  • WAN Chun-Rong ,
  • TIAN Guang-Yu
Expand
  • 1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China; 2. Department of Automotive Engineering, Tsinghua University, Beijing 100084, China; 3. Advanced Lithium Electrochemistry Co., Ltd., Taoyuan33068, Taiwan, China

Received date: 2011-11-24

  Revised date: 2012-01-19

  Online published: 2012-02-01

摘要

建立了磷酸铁锂(LiFePO4)电极材料放电曲线的阻抗模型,将不同倍率放电的电位分为欧姆电位降、电荷转移电位降与扩散阻抗电位降三部分,通过电极交流阻抗谱图,结合理论分析,推导出不同倍率电极电位的表达式. 通过模拟,其值与实验曲线较好地吻合.

关键词: LiFePO4; 阻抗模型; 模拟

本文引用格式

王铭 , 李建军 , 何向明 , 白鹏 , 吴扞 , 万春荣 , 田光宇 . LiFePO4电极放电曲线的阻抗模拟[J]. 电化学, 2012 , 18(4) : 306 -309 . DOI: 10.61558/2993-074X.2921

Abstract

In this paper, an impedance model is developed for simulating the discharge curve of LiFePO4 cathode material. The voltage drop is divided into three parts: the Ohm voltage drop, the charge transfer voltage drop and the diffusion voltage drop. A theoretical expression has been derived to predict the discharge curves at various discharge rates. The parameters of the equation have been obtained by fitting the results of EIS measurement, and a good agreement between the fitting and the experimental data has been found at all discharge rates.

参考文献

[1] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of The Electrochemical Society, 1997, 144(4): 1188-1194.
[2] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes [J]. Journal of The Electrochemical Society, 2001, 148(3): A224-A229.
[3] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nature Materials, 2002, 1(2): 123-128.
[4] Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. Electrochemical and Solid-State Letters, 2001, 4(10): A170-A172.
[5] Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell [J]. Journal of The Electrochemical Society, 1993, 140(6): 1526-1533.
[6] Doyle M, Newman J, Gozdz A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells [J]. Journal of The Electrochemical Society, 1996, 143(6): 1890-1903.
[7] Srinivasan V, Newman J. Discharge model for the lithium iron-phosphate electrode [J]. Journal of The Electrochemical Society, 2004, 151(10): A1517-A1529.
[8] Prosini P P. Modeling the voltage profile for LiFePO4 [J]. Journal of The Electrochemical Society, 2005, 152(10): A1925-A1929.
[9] Pasquali M, Dell?Era A, Prosini P P. Fitting of the voltage-Li+ insertion curve of LiFePO4 [J]. Journal of Solid State Electrochemistry, 2009, 13(12): 1859-1865.
[10] Ho C, Raistrick I D, Huggins R A. Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films [J]. Journal of The Electrochemical Society, 1980, 127(2): 343-350.
[11] Bisquert J, Vikhrenko V S. Analysis of the kinetics of ion intercalation. Two state model describing the coupling of solid state ion diffusion and ion binding processes [J]. Electrochimica Acta, 2002, 47(24): 3977-3988.
[12] Zhdanov V P. General equations for description of surface diffusion in the framework of the lattice-gas model [J]. Surface Science, 1985, 149(1): L13-L17.
文章导航

/