欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学电源近期研究专辑(武汉大学 杨汉西教授主编)

碳纳米管负载Ni2P作为染料敏化太阳能电池对电极的性能研究

  • 窦衍叶 ,
  • 晏南富 ,
  • 李国然 ,
  • 高学平
展开
  • 南开大学新能源材料化学研究所,天津 300071

收稿日期: 2011-11-24

  修回日期: 2012-02-16

  网络出版日期: 2012-02-21

基金资助

国家973计划(No. 2009CB220100),国家自然科学基金(No. 51001063)和天津市应用基础及前沿技术研究计划(No. 11JCZDJC23300)资助

Carbon Nanotubes with Ni2P Nanoparticles as a Counter Electrode in Dye-sensitized Solar Cells

  • DOU Yan-Ye ,
  • YAN 南Fu ,
  • LI Guo-Ran ,
  • GAO Xue-Ping
Expand
  • Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China

Received date: 2011-11-24

  Revised date: 2012-02-16

  Online published: 2012-02-21

摘要

本文以碳纳米管(CNTs)与Ni2P纳米晶制备CNTs-Ni2P复合材料,首次研究其染料敏化太阳能电池(DSSCs)的光阴极材料性能. 采用X射线衍射(XRD)和透射电子显微镜(TEM)测定材料结构和观察其形貌. 结果表明,复合材料由碳纳米管和六方结构的磷化镍构成,无其它磷化物杂相,磷化镍纳米晶(10 nm左右)分散于CNTs表面. 交流阻抗(EIS)测试显示,与CNTs和Ni2P对电极相比,CNTs-Ni2P对电极的电荷转移电阻和扩散阻抗较低,接近Pt-FTO对电极水平. CNTs-Ni2P对电极的DSSCs光电流达12.9 mA.cm-2,能量转化效率达5.6 %,接近Pt-FTO对电极的DSSCs能量转化效率(5.9 %). 这归因于高电催化活性的磷化镍纳米晶与高电导CNTs的协同效应.

本文引用格式

窦衍叶 , 晏南富 , 李国然 , 高学平 . 碳纳米管负载Ni2P作为染料敏化太阳能电池对电极的性能研究[J]. 电化学, 2012 , 18(4) : 301 -305 . DOI: 10.61558/2993-074X.2920

Abstract

Carbon nanotubes (CNTs) supported by Ni2P nanoparticles are prepared and used as a counter electrode in dye-sensitized solar cells (DSSCs) for the first time. The CNTs-Ni2P composite was prepared by the heat treatment of a mixed precursor including nickel chloride, sodium hypophosphite and CNTs in argon atmosphere. The X-Ray diffraction (XRD) results indicate that the as-prepared sample consists of hexagonal Ni2P and carbon nanotubes. No peaks of other nickel phosphides are observed in the XRD pattern. Microstructure of the Ni2P-CNTs composite was investigated using transmission electron microscopy (TEM). It is shown that the Ni2P nanoparticles with a size of about 10 nm are dispersed on the surface of CNTs. In addition, electrochemical impedance spectra (EIS) and photovoltaic conversion performance of counter electrodes for DSSCs are analyzed in detail. It is demonstrated that the Ni2P-CNTs composite presents an obviously low charge-transfer resistance and diffusion impedance as compared with those of individual CNTs and Ni2P. Accordingly, the DSSCs using the composite as a counter electrode have a comparable photovoltaic performance as compared with the conventional FTO/Pt counter electrode, due to the effective combination of the high electrical conductivity of carbon nanotubes and superior electrocatalytic activity of Ni2P nanoparticles.

参考文献

[1] O' Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353(6346): 737-740.
[2] Papageorgiou N. Counter-electrode function in nanocrystalline photoelectrochemical cell configurations [J]. Coordination Chemistry Reviews, 2004, 248(13/14): 1421-1446.
[3] Bessho T, Constable E C, Graetzel M. An element of surprise-efficient copper-functionalized dye-sensitized solar cells [J]. Chemical Communications, 2008, 3717-3719.
[4] Brennan L J, Byrne M T, Bari M, et al. Carbon nanomaterials for dye-sensitized solar cell applications: a bright future [J]. Advanced Energy Materials, 2011, 1(4): 472-485.
[5] Ramasamy E, Lee J W. Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells [J]. Carbon, 2010, 48(13): 3715-3720.
[6] Choi H, Kim H, Hwang S, et al. Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition [J]. Journal of Materials Chemistry, 2011, 21: 7548-7551.
[7] Jiang Q W, Li G R, Wang F, et al. Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells [J]. Electrochemistry Communications, 2010, 12: 924-927.
[8] Lee K S, Lee H K, Wang D H, et al. Dye-sensitized solar cells with Pt-and TCO-free counter electrodes [J]. Chemical Communications, 2010, 12(7): 924–927.
[9] Tai Q D, Chen B L, Guo F, et al. In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells [J]. Acs Nano, 2011, 5(5): 3795-3799.
[10] Jeon S S, Kim C, Ko J, et al. Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells [J]. Journal of Materials Chemistry, 2011, 21(22): 8146-8151.
[11] Wang M K, Anghel A M, Marsan B. CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2009, 131(44): 15976-15977.
[12] Sun H C, Qin D, Huang S Q, et al. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique [J]. Energy & Environmental Science, 2011, 4: 2630-2637.
[13] Wu M X, Lin X, Hagfeldt A, et al. Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells [J]. Angewandte Chemie International Edition, 2011, 50(15): 3520-3524.
[14] Jang J S, Ham D J, Ramasamy E. Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells [J]. Chemical Communications, 2010, 46(45): 8600-8602.
[15] Li G R, Song J, Pan G L, et al. Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells [J]. Energy & Environmental Science, 2011, 4(5): 1680-1683.
[16] Jiang Q W, Li G R, Liu S, et al. Surface-nitrided nickel with bifunctional structure as low-cost counter clectrode for dye-sensitized solar cells [J]. Journal of Physical Chemistry C, 2010, 114(31): 13397-13401.
[17] Jiang Q W, Li G R, Gao X P. Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells [J]. Chemical Communications, 2009, 44: 6720-6722.
[18] Choi H, Kim H, Hwang S, et al. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode [J]. Solar Cells and Solar Energy Materials, 2011, 95(S1): 323-325.
[19] Huang K C, Huang J H, Wu C H, et al. Nanographite/polyaniline composite films as the counter electrodes for dye-sensitized solar cells [J]. Journal of Materials Chemistry, 2011, 21: 10384-10389.
[20] Lin J Y, Liao J H, Hung T Y. A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells [J]. Electrochemistry Communications, 2011, 13(9): 977-980.
[21] Li G R, Wang F, Jiang Q W, et al. Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells [J]. Angewandte Chemie International Edition, 2010, 49(21): 3653-3656.
[22] Ramasamy E, Lee W J, Lee D Y, et al. Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells [J]. Electrochemistry Communications, 2008, 10(7): 1087-1089.
[23] Papageorgiou N, Maier W F, Gr?tzel M. An iodide/triiodide reduction electrocatalyst for aqueous and organic media [J]. Journal of The Electrochemical Society, l997, 144(3): 876-884.
[24] Fabregat-Santiago F, Bisquert J, Palomares E, et al. Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids [J]. Journal of Physical Chemistry C, 2007, 111(17): 6550-6560.
文章导航

/