欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学材料基础与表界面研究专辑(中国科学院化学研究所 万立骏院士主编)

普鲁士蓝纳米修饰电极的制备及表征

  • 王玮 ,
  • 苏宝法 ,
  • 詹东平
展开
  • 厦门大学 固体表面物理化学国家重点实验室,化学化工学院化学系,福建 厦门 361005

收稿日期: 2011-12-02

  修回日期: 2012-03-23

  网络出版日期: 2012-03-25

基金资助

国家自然科学基金项目(No. 20973142),中美NSFC-NSF化学领域合作项目(No. 21061120456)和国家自然科学基金委界面电化学创新群体(No. 21021002)资助

Preparation and Characterization of Prussian Blue Modified Nanoelectrode

  • WANG Wei ,
  • SU Bao-Fa ,
  • ZHAN Dong-Ping
Expand
  • State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2011-12-02

  Revised date: 2012-03-23

  Online published: 2012-03-25

摘要

采用激光加热拉伸的方法制备铂纳米电极,并通过交流电刻蚀的方法制备纳米孔电极,在这两种电极上可通过电化学方法原位合成单颗普鲁士蓝微晶. 结果表明,普鲁士蓝微晶在纳米微孔电极上的机械附着强度增强. 这种方法可用于制备纳米修饰电极或研究功能微晶体材料的电化学性质.

本文引用格式

王玮 , 苏宝法 , 詹东平 . 普鲁士蓝纳米修饰电极的制备及表征[J]. 电化学, 2012 , 18(3) : 252 -256 . DOI: 10.61558/2993-074X.2911

Abstract

The Pt nanoelectrodes were fabricated by using a laser-based pipet puller and the recessed nanoelectrodes were prepared by etching of disk Pt nanoelectrodes wtih high frequency ac voltage. Prussian blue microcrystal was synthesized electrochemically on the both disk and recessed Pt nanoelectrodes. The strength of mechanical adhesion for the Prussian blue microcrystal on the nanoelectrode was enhanced. A novel method for the controllable synthesis of single particle is proposed, which has potential applications in modified electrodes and single particle electrocatalysis.

参考文献

[1] Watkins J J, Chen J, White H S, et al. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions[J]. Analytical Chemistry, 2003, 75(16): 3962-3971.
[2] Sun P, Mirkin M V. Kinetics of electron-transfer reactions at nanoelectrodes[J]. Analytical Chemistry, 2006, 78(18): 6526-6534.
[3] Wightman R M. Probing cellular chemistry in biological systems with microelectrodes[J]. Science, 2006, 311(5767): 1570-1574.
[4] Sun P, Laforge F O, Abeyweera T P, et al. Nanoelectrochemistry of mammalian cells[J]. Proceedings of National Academy Sciences of the United States of America, 2008, 105(2): 443-448.
[5] Morris R B, Franta D J, White H S. Electrochemistry at platinum bane electrodes of width approaching molecular dimensions: Breakdown of transport equations at very small electrodes[J]. The Journal of Physical Chemistry, 1987, 91(13): 3559-3564.
[6] Smith C P, White H S. Theory of the voltammetric response of electrodes of submicron dimensions. Violation of electroneutrality in the presence of excess supporting electrolyte[J]. Analytical Chemistry, 1993, 65(23): 3343-3353.
[7] Sun Y, Liu Y, Liang Z, et al. On the applicability of conventional voltammetric theory to nanoscale electrochemical interfaces[J]. The Journal of Physical Chemistry C, 2009, 113(22): 9878-9883.
[8] Liu Y, He R, Zhang Q, et al. Theory of electrochemistry for nanometer-sized disk electrodes[J]. The Journal of Physical Chemistry C, 2010, 114(24): 10812-10822.
[9] Agyekum I, Nimley C, Yang C X, et al. Combination of scanning electron microscopy in the characterization of a nanometer-sized electrode and current fluctuation observed at a nanometer-sized electrode[J]. The Journal of Physical Chemistry C, 2010, 114(35): 14970-14974.
[10] Zhan D P, Velmurugan J, Mirkin M V. Adsorption/desorption of hydrogen on Pt nanoelectrodes: Evidence of surface diffusion and spillover[J]. Journal of the American Chemical Society, 2009, 131(41): 14756-14760.
[11] Su B F, Wang W, Zhan D P, et al. Surface diffusion of adsorptive species on gold nanoelectrode[J]. Electrochemistry, 2011, 17(3): 300-305.
[12] Li Y, Cox J T, Zhang B. Electrochemical responses and electrocatalysis at single Au nanoparticles[J]. Journal of the American Chemical Society. 2010, 132(9): 3047-3054.
[13] Guo J, Ho C N, Sun P. Electrochemical studies of chemically modified nanometer-sized electrodes[J]. Electroanalysis, 2011, 23(2): 481-486.
[14] Itaya K, Uchida I, Neff V D. Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues[J]. Accounts Chemical Research, 1986, 19 (1):162-168.
[15] Benari M D, Hefter G T. Electrochemical characteristics of the iron(III)/iron(II) system in dimethylsulfoxide solutions[J]. Electrochimica Acta, 1991, 36(3/4): 471-477.
[16] Imanishi N, Morikawa T, Kondo J, et al. Lithium intercalation behavior into iron cyanide complex as positiveelectrode of lithium secondary battery[J]. Journal of Power Sources, 1999, 79 (2): 215-219.
[17] Eftekhari A. Potassium secondary cell based on Prussian blue cathode[J]. Journal of Power Sources, 2004, 126(1/2): 221-228.
[18] de Tacconi N R, Rajeshwar K. Metal hexacyanoferrates: Electrosynthesis, in situ characterization, and applications[J]. Chemistry of Materials, 2003, 15(16): 3046-3062.
[19] Wu, X, Cao M, Hu C, et al. Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor[J]. Crystal Growth Design, 2006, 6(1): 26-28..
[20] Zheng X J, Kuang Q, Xu T, et al. Growth of Prussian blue microcubes under a hydrothermal condition: Possible nonclassical crystallization by a mesoscale self-assembly[J]. The Journal of Physical Chemistry C, 2007, 111(12): 4499-4502.
[21] Yang D Z, Han L H, Yang Y, et al. Solid-state redox solutions: Microfabrication and electrochemistry[J]. Angewandte Chemie-International Edition, 2011, 50(37): 8679-8682.
[22] Cha C S (查全性). Introduction to kinetics of electrode processes[M]. 3rd edition. Beijing: Science Press, 2002.
文章导航

/