能源和环境的可持续发展是本世纪最重要的问题之一. 二次电池是具有重要意义的高效储能器件,在电动汽车及混合动力汽车等实际应用中,经常会用到电池组,此时需要考虑电池组中每一个单体电池性能的一致性. 内阻作为用于表征电池一致性的性能参数之一,对电池的工业制造和使用非常重要。目前,锂离子电池等二次电池的内阻测试都是按照国际电工委员会第 61960 号标准(2003)来进行的. 本文从该标准的理论基础和其在内阻测试仪中的实际应用等方面出发,分析并指出了该测试标准中的问题,希望能为整个电池行业新标准的建立提供一定的指导,并有助于可持续能源设备及电动汽车用动力电池的开发.
The sustainable development of energy and environment is one of the most influential issues of this century. Batteries, especially secondary batteries are important for powering out daily life. However, in many practical applications, such as in electric vehicles and hybrid electric vehicles, batteries should be used in packs and the performance consistency of each battery in the pack should be taken into consideration. As one of the performance parameters being used to characterize the battery consistency, internal resistance is of great importance to the industrial fabrication and the use of batteries. Currently, internal resistance tests of secondary batteries, such as lithium-ion batteries are usually performed in accordance with the International Electrotechnical Commission (IEC) Standard 61960 (2003). This comment addresses the problematic issues in the standard, both from its theoretical basis and its practical use in internal resistance testers, for providing instructional views on new standard setting of the entire battery industry, and hoping it definitely promote the development of sustainable energy devices as well as electric vehicles.
[1] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[2] Maier J. Nanoionics: Ion transport and electrochemical storage in confined systems[J]. Nature Materials, 2005, 4(11): 805-815.
[3] Whittingham M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4302.
[4] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366-377.
[5] Balaya P. Size effects and nanostructured materials for energy applications[J]. Energy & Environmental Science, 2008, 1(6): 645-654.
[6] Bruce P G, Scrosati B, Tarascon J-M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47(16): 2930-2946.
[7] Guo Y-G, Hu J-S, Wan L-J. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008, 20(15): 2878-2887.
[8] Li H, Wang Z, Chen L, et al. Research on advanced materials for Li-ion batteries[J]. Advanced Materials, 2009, 21(45): 4593-4607.
[9] Berdichevsky G, Kelty K, Straubel J, et al. The tesla roadster battery system. Tesla Motors. 2006: 1-5.
[10] Barsoukov E, Macdonald J R. Impedance spectroscopy: Theory, experiment and applications[M]. 2nd Ed. Hoboken: John Wiley & Sons, Inc., 2005: 1-616.
[11] Orazem M E, Tribollet B. Electrochemical impedance spectroscopy[M]. Hoboken: John Wiley & Sons, Inc., 2008: 1-525.
[12] Maier J. Physical chemistry of ionic materials: Ions and electrons in solids[M]. Chichester: John Wiley & Sons, Ltd, 2004: 1-537.
[13] Bard A J, Faulkner L R. Electrochemical methods: Fundamentals and applications[M]. 2nd Ed. New York: John Wiley & Sons, Inc., 2000: 1-856.
[14] Lee J-S, Jamnik J, Maier J. Generalized equivalent circuits for mixed conductors: Silver sulfide as a model system[J]. Monatshefte für Chemie/Chemical Monthly, 2009, 140(9): 1113-1119.
[15] HIOKI E.E. Corporation. Product Catalog of 3561 Battery HiTESTER[EB/OL]. http://www.hioki.com/product/pdf/3561E1-56E-05U_web.pdf.