[1] Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells: Methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192.
[2] Franks A E, Nevin K P. Microbial fuel cells, a current review[J]. Energies, 2010, 3(5): 899-919.
[3] Das S, Mangwani N. Recent developments in microbial fuel cells: A review[J]. Journal of Scientific & Industrial Research, 2010, 69(10): 727-731.
[4] Lu N (卢娜), Zhou S G (周顺桂), Ni J R (倪晋仁). Mechanism of energy generation of microbial fuel cells[J]. Progress in Chemisity (化学进展), 2008, 20(7/8): 1233-1240.
[5] Cheng S A, Logan B E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(3): 492-496.
[6] Rinaldi A, Mecheri B, Garavaglia V, et al. Engineering materials and biology to boost performance of microbial fuel cells: A critical review[J]. Energy & Environmental Science, 2008, 1(4): 417-429.
[7] Zeng L Z (曾丽珍),Li W S (李伟善). Research progress on the electrode matrials for microbial FC[J]. Chinese Battery Industry (电池工业), 2009, 14(4): 280-284.
[8] Kim B H, Chang I S, Gadd G M. Challenges in microbial fuel cell development and operation[J]. Applied Microbiology and Biotechnology, 2007, 76(3): 485-494.
[9] Zhou M H, Chi M L, Luo J M, et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4427-4435.
[10] Wu C (武晨), Zhang J Q (张嘉琪), Wang, X L(王晓丽), et al. Power generation of microbial fuel cell from aniline and glucose[J]. Acta Scientiae Circumstantiae (环境科学报), 2011, 31(6): 1227-1232.
[11] Wang X, Feng Y J, Lee H. Electricity production from beer brewery wastewater using single chamber microbial fuel cell[J]. Water Science and Technology, 2008, 57(7): 1117-1121.
[12] Liu H, Ramnarayanan R, Logan B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environmental Science & Technology, 2004, 38(7): 2281-2285.
[13] Chaudhuri S K, Lovley D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nature Biotechnology, 2003, 21(10): 1229-1232.
[14] Wang H M, Davidson M, Zuo Y, et al. Recycled tire crumb rubber anodes for sustainable power production in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(14): 5863-5866.
[15] Logan B E, Cheng S A, Watson V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9): 3341-3346.
[16] Zhao F, Rahunen N, Varcoe J R, et al. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell[J]. Environmental Science & Technology, 2008, 42(13): 4971-4976.
[17] He Z, Wagner N, Minteer S D, et al. An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy[J]. Environmental Science & Technology, 2006, 40(17): 5212-5217.
[18] Kalathil S, Lee J, Cho M H. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation[J]. New Biotechnology, 2011, 29(1): 32-37.
[19] Feng Y, Yang Q, Wang X, et al. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J]. Journal of Power Sources, 2010, 195(7): 1841-1844.
[20] Wang X, Cheng S A, Feng Y J, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(17): 6870-6874.
[21] Saito T, Mehanna M, Wang X, et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technologyogy, 2011, 102(1): 395-398.
[22] Tender L M, Reimers C E, Stecher H A, et al. Harnessing microbially generated power on the seafloor[J]. Nature Biotechnology, 2002, 20(8): 821-825.
[23] Lowy D A, Tender L M, Zeikus J G, et al. Harvesting energy from the marine sediment-water interface II - Kinetic activity of anode materials[J]. Biosensors and Bioelectronics, 2006, 21(11): 2058-2063.
[24] Feng C H, Ma L, Li F B, et al. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells[J]. Biosensors and Bioelectronics, 2010, 25(6): 1516-1520.
[25] Scott K, Rimbu G A, Katuri K P, et al. Application of modified carbon anodes in microbial fuel cells[J]. Process Safety and Environmental Protection, 2007, 85(B5): 481-488.
[26] Kim J R, Min B, Logan B E. Evaluation of procedures to acclimate a microbial fuel cell for electricity production[J]. Applied Microbiology and Biotechnology, 2005, 68(1): 23-30.
[27] Park D H, Zeikus J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation[J]. Biotechnology and Bioengineering, 2003, 81(3): 348-355.
[28] Rosenbaum M, Schroder U, Scholz F. Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions[J]. Journal of Solid State Electrochemistry, 2006, 10(10): 872-878.
[29] Nam J Y, Kim H W, Lim K H, et al. Electricity generation from MFCs using differently grown anode-attached bacteria[J]. Environmental Engineering Research, 2010, 15(2): 71-78.
[30] Wang K P (王凯鹏), Chen S L (陈胜利). The synthesise of electron-conducting redox hydrogel and its application in microbial fuel cell[J]. Journal of Electrochemistry (电化学), 2010, 16(1): 20-24.
[31] Peng L, You S J, Wang J Y. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis[J]. Biosensors and Bioelectronics, 2010, 25(5): 1248-1251.
[32] Liang P (梁鹏), Fan M Z (范明志), Cao X X (曹效鑫), et al. Electricity generation by the microbial fuel cells using carbon nanotube as the anode[J]. Environmental Science (环境科学), 2008, 29(8): 2356-2360.
[33] Sharma T, Reddy A L M, Chandra T S, et al. Development of carbon nanotubes and nanofluids based microbial fuel cell[J]. International Journal of Hydrogen Energy, 2008, 33(22): 6749-6754.
[34] Nambiar S, Togo C A, Limson J L. Application of multi-walled carbon nanotubes to enhance anodic performance of an enterobacter cloacae-based fuel cell[J]. African Journal of Biotechnology, 2009, 8(24): 6927-6932.
[35] Tsai H Y, Wu C C, Lee C Y, et al. Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes[J]. Journal of Power Sources, 2009, 194(1): 199-205.
[36] Sun J J, Zhao H Z, Yang Q Z, et al. A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell[J]. Electrochimica Acta, 2010, 55(9): 3041-3047.
[37] Xie X, Hu L B, Pasta M, et al. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells[J]. Nano Letters, 2011, 11(1): 291-296.
[38] Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials[J]. Nano Letters, 2006, 6(6): 1121-1125.
[39] Dong H, Li C M, Chen W, et al. Sensitive amperometric immunosensing using polypyrrolepropylic acid films for biomolecule immobilization[J]. Analytical Chemistry, 2006, 78(21): 7424-7431.
[40] Li C M, Chen W, Yang X, et al. Impedance labelless detection-based polypyrrole protein biosensor[J]. Frontiers in Bioscience, 2005, 10: 2518-2526.
[41] Schroder U, Niessen J, Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude[J]. Angewandte Chemie International Edition, 2003, 42(25): 2880-2883.
[42] Niessen J, Schroder U, Rosenbaum M, et al. Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells[J]. Electrochemistry Communications, 2004, 6(6): 571-575.
[43] Qiao Y, Li C M, Bao S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J]. Journal of Power Sources, 2007, 170(1): 79-84.
[44] Zou Y J, Xiang C L, Yang L N, et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material[J]. International Journal of Hydrogen Energy, 2008, 33(18): 4856-4862.
[45] Ci S Q, Wen Z H, Chen J H, et al. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells[J]. Electrochemistry Communications, 2012, 14(1):71-74.
[46] Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry[J]. Chemical Society Reviews, 2010, 39(8): 3157-3180.
[47] Chang H X, Zhang H, Lv X J, et al. Quantum dots sensitized graphene: In situ growth and application in photoelectrochemical cells[J]. Electrochemistry Communications, 2010, 12(3): 483-487.
[48] Li Y M, Lv X J, Lu J, et al. Preparation of SnO2 nanocrystal/graphene nanosheets composites and their lithium storage ability[J]. Journal of Physical Chemistry C, 2010, 114(49): 21770-21774.
[49] Xia J L, Chen F, Li J H, et al. Measurement of quantum capacitance of graphene[J]. Nature Nonotechnology, 2009, 4: 505-509.
[50] Li Y M, Tang L H, Li J H. Pt/graphene nano composites as the anode catalyst of methanol oxidation[J]. Electrochemistry Communications, 2009, 11(4): 846-849.
[51] Tang L H, Wang Y, Li Y M, et al. Preparation, structure and electrochemical properties of graphene modified electrode[J]. Advanced Functional Materials, 2009, 19(17): 2782-2789.
[52] Huang Y X, Liu X W, Xie J F, et al. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems[J]. Chemical Communications, 2011, 47(20): 5795-5797.
[53] Zhang Y, Mo G, Li X, et al. A graphene modified anode to improve the performance of microbial fuel cells[J]. Journal of Power Sources, 2011, 196(13): 5402-5407.
[54] Luo J Y, Jang H D, Sun T, et al. Compression and aggregation-resistant particles of crumpled soft sheets[J]. ACS Nano, 2012, 5(11): 8943-8949.
[55] Watanabe K. Recent sevelopments in microbial fuel cell technologies for sustainable bioenergy[J]. Journal of Bioscience and Bioengineering, 2008, 106(6): 528-536.
[56] Cheng S, Liu H, Logan B E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(1): 364-369.
[57] Sanchez D V P, Huynh P, Kozlov M E, et al. Carbon nanotube/platinum (Pt) sheet as an improved cathode for microbial fuel cells[J]. Energy & Fuels, 2010, 24(11): 5897-5902.
[58] Xie X, Pasta M, Hu L B, et al. Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells[J]. Energy & Environmental Science, 2011, 4(4): 1293-1297.
[59] Morris J M, Jin S, Wang J Q, et al. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(7): 1730-1734.
[60] Roche I, Scott K. Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution[J]. Journal of Applied Electrochemistry, 2009, 39(2): 197-204.
[61] Zhang L X, Liu C S, Zhuang L, et al. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells[J]. Biosensors and Bioelectronics, 2009, 24(9): 2825-2829.
[62] Li X, Hu B X, Suib S, et al. Manganese dioxide as a new cathode catalyst in microbial fuel cells[J]. Journal of Power Sources, 2010, 195(9): 2586-2591.
[63] Liu X W, Sun X F, Huang Y X, et al. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater[J]. Water Research, 2010, 44(18): 5298-5305.
[64] Lu M, Kharkwal S, Ng H Y, et al. Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells[J]. Biosensors and Bioelectronics, 2011, 26(12): 4728-4732.
[65] Jasinski R. A new fuel cell cathode catalyst[J]. Nature 1964, 201: 1212 - 1213.
[66] Faubert G, Lalande G, Cote R, et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells[J]. Electrochimica Acta, 1996, 41(10): 1689-1701.
[67] Ohms D, Herzog S, Franke R, et al. Influence of metal-ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile[J]. Journal of Power Sources, 1992, 38(3): 327-334.
[68] Zhao F, Harnisch F, Schroder U, et al. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells[J]. Electrochemistry Communications, 2005, 7(12): 1405-1410.
[69] Hao Y E, Cheng S A, Scott K, et al. Microbial fuel cell performance with non-Pt cathode catalysts[J]. Journal of Power Sources, 2007, 171(2): 275-281.
[70] Harnisch F, Savastenko N A, Zhao F, et al. Comparative study on the performance of pyrolyzed and plasma-treated iron(II) phthalocyanine-based catalysts for oxygen reduction in pH neutral electrolyte solutions[J]. Journal of Power Sources, 2009, 193(1): 86-92.
[71] Kim J R, Kim J Y, Han S B, et al. Application of co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells[J]. Bioresource Technology, 2011, 102(1): 342-347.
[72] Birry L, Mehta P, Jaouen F, et al. Application of iron-based cathode catalysts in a microbial fuel cell[J]. Electrochimica Acta, 2011, 56(3): 1505-1511.
[73] Yuan Y, Ahmed J, Kim S. Polyaniline/carbon black composite-supported iron phthalocyanine as an oxygen reduction catalyst for microbial fuel cells[J]. Journal of Power Sources, 2011, 196(3): 1103-1106.
[74] Zhang Y, Mo G, Li X, et al. Iron tetrasulfophthalocyanine functionalized graphene as a platinum-free cathodic catalyst for efficient oxygen reduction in microbial fuel cells[J]. Journal of Power Sources, 2012, 197: 93-96.
[75] Zhang F, Cheng S A, Pant D, et al. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell[J]. Electrochemistry Communications, 2009, 11(11): 2177-2179.
[76] Zhang F, Pant D, Logan B E. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells[J]. Biosensors and Bioelectronics, 2011, 30(1): 49-55.
[77] Feng L Y, Yan Y Y, Chen Y G, et al. Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells[J]. Energy & Environmental Science, 2011, 4(5): 1892-1899.