“结构-活性关系(SAR)”被普遍看作催化剂研究的一个核心问题,但本文强调“性质-活性关系(PAR)”对催化剂研究的方法论意义. 此处“性质”指反映催化剂与反应物或中间物相互作用行为的一个参数(例如对中间物的吸附能)或参数组,它是催化剂结构与活性之间的桥梁. 因性质与活性之间的联系较结构与活性之间的联系更直接,PAR应比SAR较简单和易得,故PAR更具可行性. 一旦通过建立PAR而确定了催化剂的关键性质,就可进而探索此关键性质与结构的关系,即“结构-性质关系(SPR)”. 本文举例说明,PAR与SPR相结合不仅相当于SAR,而且比单独的SAR更能深入理解催化剂本质,并提供更多信息.
陆君涛
,
肖丽
,
王得丽
,
孙玉宝
,
索艳格
,
庄林
. “性质-活性关系”对催化剂研究的方法论意义[J]. 电化学, 2012
, 18(3)
: 215
-222
.
DOI: 10.61558/2993-074X.2906
Instead of attempting the structure-activity relationship (SAR), which is commonly regarded as the core problem for catalyst studies, this paper highlights the methodological significance of “property-activity relationship (PAR)”. The “property” here refers to an index (such as the adsorption energy of an intermediate) or a group of indexes reflecting the behavior of a catalyst which interacts with reactants or intermediates, and is a bridge between structure and activity. Because property is related to activity more directly than structure to activity, PAR should be simpler, less difficult and, therefore, more feasible to be accessed than SAR. Once the key property is identified by establishing PAR, one can go further to explore structure-property relationship (SPR). This paper exemplifies that SPR plus PAR is not only equivalent to SAR, but also able to provide more information than SAR does alone for a deeper understanding of the catalyst.
[1] Фрумкин A Н, Багоцкий В С, Иофа З А, et al. Tr. Zhu R Z. Kinetics of electrode processes [M], Beijing: Science Press (科学出版社), 1965, 128.
[2] Conway B E, Jeerkiewicz G. Relation of energies and coverages of underpotential and overpotential deposition H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics[J]. Electrochimica Acta, 2000, 45(25/26):4075-4083.
[3] Sun Y, Zhuang L, Lu J, et al. Collapse in crystalline structure and decline in catalytic activity of Pt nanoparticles on reducing particle size to 1 nm[J]. Journal of the American Chemical Society, 2007, 129(50):15465-15467.
[4] N?rskov J K, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B, 2004, 108(46):17886-17892.
[5] Stamenkonvic V, Mun B S, Mayrhofer K J J, et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angewandte Chemie-International Edition, 2006, 45(18): 2897-2901.
[6] Suo Y, Zhuang L, Lu J. First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction[J]. Angewandte Chemie-International Edition, 2007, 46(160): 2862-2864.
[7] Shao M H, Sasaki K, Adzic R R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction[J]. Journal of the American Chemical Society, 2006, 128: 3526-3527.
[8] Xiao L,Zhuang L, Liu Y, Lu J, Abruna H D. Activating Pd by morphology tailoring for oxygen reduction[J]. Journal of the American Chemical Society, 2009, 131(2):602-608.
[9] Rolison D R. Catalytic nanoarchitectures – The importance of nothing and the unimportance of periodicity[J]. Science, 2003, 299(5613):1698-1701.
[10] Wang D, Lu J, Zhuang L. Quantitative property-activity relationship of PtRu/C catalysts for methanol oxidation[J]. ChemPhysChem, 2008, 9(140):1986-1988.
[11] Miyake H, Okada T, Samjeskeb G, et al. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy[J]. Chemphyschem, 2008, 9(14): 1986-1988.
[12] Xiao L, Huang B, Zhuang L, et al. Optimization strategy for fuel-cell catalysts based on electronic effects[J]. RSC Advances, 2011, 1(7): 1358-1363.