欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

聚吡咯/氧化石墨烯层状复合材料的制备及其在超级电容器中的应用(英文)

  • 许思哲 ,
  • 周雪皎 ,
  • 吴坤 ,
  • 杨永强 ,
  • 吴海霞
展开
  • 上海交通大学微纳米科学与技术研究院,上海 200240

收稿日期: 2011-12-26

  修回日期: 2012-01-17

  网络出版日期: 2012-01-29

基金资助

This work was supported by the National Natural Science Foundation of China (No. 20906055), National “973 Program” (No. 2010CB933900) and the State Key Laboratory of Bioreactor engineering (No. 2060204).

Electrochemical Performances of Layered Polypyrrole/Chemically Reduced Graphene Oxide Nanocomposites as Supercapacitor Electrodes

  • XU Si-Zhe ,
  • ZHOU Xue-Jiao ,
  • WU Kun ,
  • YANG Yong-Qiang ,
  • WU Hai-Xia
Expand
  • National Key Laboratory of Micro/Nano Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China)

Received date: 2011-12-26

  Revised date: 2012-01-17

  Online published: 2012-01-29

摘要

论文通过将吡咯单体在低温下与氧化石墨烯进行原位聚合,获得聚吡咯/石墨烯(Ppy/CRGO)复合材料. 采用场发射电子显微镜(FESEM)、红外 (FT-IR)和热重 (TGA)对复合物的表面形貌、结构进行表征. FESEM结果表明,通过控制氧化石墨烯(GO)和吡咯单体的质量比例,可以对复合物的层状和厚度进行调控. FT-IR和TGA结果表明聚吡咯(Ppy)是通过化学键合的方式与氧化石墨烯复合在一起。通过机械冷压法将粉末状Ppy/CRGO复合物压成圆片电极,并探讨了石墨烯和聚吡咯复合比例、反应时间、烘干温度、孔隙率等因素对Ppy/CRGO复合物电极的电学和电化学性能的影响. 结果表明,Ppy与CRGO质量比为10:1所制得的Ppy/CRGO复合物的电容量为421 F?g-1,通过在电极中引入孔隙,电容量能进一步提升为509 F?g-1.

本文引用格式

许思哲 , 周雪皎 , 吴坤 , 杨永强 , 吴海霞 . 聚吡咯/氧化石墨烯层状复合材料的制备及其在超级电容器中的应用(英文)[J]. 电化学, 2012 , 18(4) : 348 -358 . DOI: 10.61558/2993-074X.2930

Abstract

Nanocomposites of polypyrrole (Ppy) and chemically reduced graphene oxide (CRGO), Ppy/CRGO, have been fabricated through in-situ polymerization of pyrrole on graphene oxide (GO) sheets. The as-synthesized Ppy/CRGO composites were characterized complementarily using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transformed infrared spectroscopy (FT-IR). By controlling the initial ratio of the GO to pyrrole, the layered composites could be obtained and their thickness could be tuned properly. The Ppy/CRGO electrodes were prepared using a mechanical compressing technique and their electrical conductivity and electrochemical properties were characterized systematically. We demonstrated that as electrodes for supercapacitor, the Ppy/CRGO composites with Ppy to CRGO ratio of 10:1 showed a competitive capacitance of 421 F?g-1 that could be further increased to 509 F?g-1 by introducing pores in it, which is higher than that of Ppy alone. Given the manifest electrical and electrochemical properties, we envisage that the Ppy/CRGO composites should find applications in supercapacitors.

参考文献

[1] Jeong Y U, Manthiram A. Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes [J]. Journal of the Electrochemical Society, 2002, 149(11): A1419-A1422.
[2] Devine-Wright P. Beyond NIMBYism: towards an integrated framework for understanding public perceptions of wind energy [J]. Wind Energy, 2005, 8(2): 125-139.
[3] Manwell J F, McGowan J G, Rogers A L. Wind energy explained: theory, design and application [M]. Amherst: John Wiley and Sons, 2002: 11-22.
[4] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007, 317(5835): 222-225.
[5] O'regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353(6346): 737-740.
[6] Zhang D, Zhang X, Chen Y, et al. Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors [J]. Journal of Power Sources, 2011, 196(14): 5990-5996.
[7] Conway B E. Electrochemical supercapacitors: scientific fundamentals and technological applications [M]. New York: Springer, 1999: 444-445.
[8] Fuertes, A B, Lota G, Centeno T A, et al. Templated mesoporous carbons for supercapacitor application [J]. Electrochimica Acta, 2005, 50(14): 2799-2805.
[9] Conway B E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage [J]. Journal of the Electrochemical Society, 1991, 138(6): 1539-1540.
[10] Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors [J]. Nano letters, 2008, 8(10): 3498-3502.
[11] Lota G, Lota K, Frackowiak E. Nanotubes based composites rich in nitrogen for supercapacitor application [J]. Electrochemistry communications, 2007, 9(7): 1828-1832.
[12] Subramanian V, Zhu H, Vajtai R, et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures [J]. The Journal of Physical Chemistry B, 2005, 109(43): 20207-20214.
[13] Bose S, Kim N H, Kuila T, et al. Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode [J]. Nanotechnology, 2011, 22(29): 295202 (9pp).
[14] Gamby, J, Taberna P L, Simon P, et al. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors [J]. Journal of Power Sources, 2001, 101(1): 109-116.
[15] Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, et al. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte [J]. Carbon, 2003, 41(9): 1765-1775.
[16] Frackowiak E. Carbon materials for supercapacitor application [J]. Physical Chemistry Chemical Physics, 2007, 9(15): 1774-1785.
[17] Prabaharan S R S, Vimala R and Zainal Z. Nanostructured mesoporous carbon as electrodes for supercapacitors [J]. Journal of Power Sources, 2006, 161(1): 730-736.
[18] Li W, Chen D, Li Z, et al. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor [J]. Electrochemistry communications, 2007, 9(4): 569-573.
[19] An K H, Kim W S, Park Y S, et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes [J]. Advanced Functional Materials, 2001, 11(5): 387-392.
[20] Niu C, Sichel K E, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrodes [J]. Applied Physics Letters, 1997, 70(11): 1480-1482.
[21] Wang Y, Shi Z, Huang Y, et al. Supercapacitor devices based on graphene materials [J]. The Journal of Physical Chemistry C, 2009, 113(30): 13103-13107.
[22] K?tz R and Carlen M. Principles and applications of electrochemical capacitors [J]. Electrochimica acta, 2000, 45(15/16): 2483-2498.
[23] Zhou H, Chen H, Luo S, et al. The effect of the polyaniline morphology on the performance of polyaniline supercapacitors [J]. Journal of Solid State Electrochemistry, 2005, 9(8): 574-580.
[24] Gupta V, Miura N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline [J]. Materials Letters, 2006, 60(12): 1466-1469.
[25] Ingram M D, Staesche H, Ryder K S. 'Activated'polypyrrole electrodes for high-power supercapacitor applications [J]. Solid State Ionics, 2004, 169(1/4): 51-57.
[26] Sharma R K, Rastogi A C, Desu S B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor [J]. Electrochemistry communications, 2008, 10(2): 268-272.
[27] Laforgue A, Simon P, Sarrazin C, et al. Polythiophene-based supercapacitors [J]. Journal of Power Sources, 1999, 80(1/2): 142-148.
[28] Xu, J, Wang K, Zu S, et al. Hierarchical nanocomposites of polyaniline nanowire Arrays on graphene oxide sheets with synergistic effect for energy storage [J]. ACS nano, 2010, 4(9): 5019-5026.
[29] Zhang K, Zhang L, Zhao X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes [J]. Chemistry of Materials, 2010, 22(4): 1392-1401.
[30] Zhang J, Yang H, Shen G, et al. Reduction of graphene oxide vial-ascorbic acid [J]. Chemical Communications, 2009, 46(7): 1112-1114.
[31] Zhou X, Zhang J, Wu H, et al. Reducing graphene oxide via hydroxylamine: A simple and efficient route to graphene [J]. The Journal of Physical Chemistry C, 2011, 115(24): 11957-11961.
[32] He C, Yang C, Li Y. Chemical synthesis of coral-like nanowires and nanowire networks of conducting polypyrrole [J]. Synthetic metals, 2003, 139(2): 539-545.
[33] Amarnath C A, Hong C E, Kim N H, et al. Efficient synthesis of graphene sheets using pyrrole as a reducing agent [J]. Carbon, 2011, 49(11): 3497-3502.
[34] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials [J]. Nature, 2006, 442(7100): 282-286.
[35] Li, D, Muller, M B, Gilje, S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nature Nanotechnology, 2008, 3(2): 101-105.
[36] Liu C, Yu Z, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density [J]. Nano letters, 2010, 10 (12): 4863-4868.
文章导航

/