质子化过程是大多数酸碱理论的核心,也发生在许多生命过程中。因此,研究限域环境中分子或官能团的质子化过程将为进一步认识酸碱理论和阐述限域环境中生物分子的基本行为提供理论依据。本文提出了一种以荷电电化学探针检测多孔氧化铝阵列纳米通道内表面官能团质子化过程的新方法。该方法利用纳米通道表面官能团的质子化过程改变了表面荷电性质,从而调控荷电电化学探针在纳米通道中的传输行为。实验中以喷涂在阵列氧化铝纳米通道膜一侧的薄金膜为工作电极,检测通过阵列纳米通道荷电电化学探针的流量,以此获得纳米通道限域条件下的质子化过程。同时以多孔氧化铝阵列纳米通道为限域空腔,利用硅烷化反应将氨基修饰在纳米通道的内表面,通过检测不同pH值条件下铁氰酸根离子在纳米通道中流量的变化,获得了纳米通道限域条件下氨基质子化滴定曲线。结果表明,纳米通道限域条件下氨基官能团发生一步质子化,其pK1/2值为5.9。本文提出的方法适用于研究纳米通道限域条件下其它官能团或生物分子的质子化过程。
高红丽
,
周凯琳
,
王琛
,
李素娟
,
章慧
,
夏兴华
. 阵列纳米通道中氨基官能团质子化研究[J]. 电化学, 2012
, 18(3)
: 229
-234
.
DOI: 10.61558/2993-074X.2908
Protonization process is the key step of acid-base reaction and occurs in many biological processes. Study of the protonization process of molecules and/or functional groups in confined conditions would assist understanding in the acid-base theory and confinement effect of biomolecules. In this paper, we developed a novel approach to study protonization of functional groups in porous anodic alumina array nanochannels by measuring the flux of electrochemical active probes using an Au film electrochemical detector sputtered at the end of the nanochannels. The protonization status of the surface functional groups in nanochannels can change the surface charges and further modulate the transportation of charged electroactive probes through nanochannels. The titration curve for the protoniation of amine groups in nanochannel confined condition is obtained by measuring the current signal of ferricyanide probe flowing through an anime-anchored PAA nanochannel array at different solution pH. Results show that the protonization of amino group in nanochannel occurs in one step with a pK1/2=5.9. The present method provides an effective tool to study the protonization processes of various functional groups and biomoelcuels.
[1] Chen W, Xia X H. highly stable nickel hexacyanoferrate nanotubes for electrically switched ion exchange [J]. Advanced Functional Materials, 2007, 17(15): 2943-2948.
[2] Chen W, Xia X H. An electrokinetic method for rapid synthesis of nanotubes [J]. ChemPhysChem, 2007, 8(7): 1009-1012.
[3] Kamalakar M V, Raychaudhuri A K. A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field [J]. Advanced Materials, 2008, 20(1): 149-154.
[4] Mahima S, Kannan R, Komath I, et al. Synthesis of platinum y-junction, nanostructures using hierarchically designed alumina templates and their enhanced electrocatalytic activity for fuel-cell applications [J]. Chemistry of Materials, 2008, 20(3): 601-603.
[5] Dai J H, Baker G L, Bruening M L. Use of porous membranes modified with polyelectrolyte multilayers as substrates for protein arrays with low nonspecific adsorption [J]. Analytical Chemistry, 2006, 78(1): 135-140.
[6] Yuan J H, He F Y, Sun D C, et al. A simple method for preparation of through-hole porous anodic alumina membrane [J]. Chemistry of Materials, 2004, 16(10): 1841-1844.
[7] Chen W, Wu J S, Xia X H. Porous anodic alumina with continuously manipulated pore/cell size [J]. ACS Nano, 2008, 2(5): 959-965.
[8] Chen W, Wang F B, Ruan M H, et al. Simultaneous fabrication of open-ended porous membrane and microtube array in one-step anodization of aluminum [J]. Science of Advanced Materials, 2009, 1(1): 25-30.
[9] Chen W, Yuan J H, Xia X H. Characterization and manipulation of the electroosmotic flow in porous anodic alumina membranes [J]. Analytical Chemistry, 2005, 77(24): 8102-8108.
[10] Chen W, Wu Z Q, Xia X H, et al. Anomalous diffusion of electrically neutral molecules in charged nanopores [J]. Angewandte Chemie International Edition, 2010, 49(43), 7943-7947.
[11] Li S J, Li J, Wang K, et al. Nanochannel array-based electrochemical device for quantitative label-free dna analysis [J]. ACS Nano, 2010, 4(11): 6417-6424.
[12] Sparreboom W, Berg A V D, Eijkel J C T. Principles and applications of nanofluidic transport [J]. Nature Nanotechnology, 2009, 332(4): 713-720.
[13] Kuo T C, Sloan L A, Sweedler J V, et al. Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow:?Effect of surface charge density and debye length [J]. Langmuir, 2001, 17(20): 6298-6303.
[14] Smith D A, Wallwork M L, Zhang J, et al. The effect of electrolyte concentration on the chemical force titration behavior of ω-functionalized SAMs: Evidence for the formation of strong ionic hydrogen bonds [J]. The Journal of Physical Chemistry B, 2000, 104(37): 8862-8870.
[15] He H X, Huang W, Zhang H, et al. Demonstration of high-resolution capability of chemical force titration via study of acid/base properties of a patterned self-assembled monolayer [J]. Langmuir, 2000, 16(2): 517-521.
[16] Zhang H, He H X, Wang J, et al. Force titration of amino group-terminated self-assembled monolayers using chemical force microscopy [J]. Applied Physics A: Materials Science & Processing, 1998, 66(1): S269-S271.