欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学电源近期研究专辑(武汉大学 杨汉西教授主编)

无模板法合成具有分级结构的多孔氧化镍及其电容性能研究(英文)

  • 黄芸 ,
  • 吴中 ,
  • 张新波
展开
  • 1.中国科学院长春应用化学研究所,稀土资源利用国家重点实验室,吉林 长春 130022 2.吉林大学材料科学与工程学院,汽车材料教育部重点实验室,吉林 长春130012 3.中国科学院研究生院, 北京 100039

收稿日期: 2011-12-24

  修回日期: 2012-02-15

  网络出版日期: 2012-02-25

基金资助

This work was financially supported by 100 Talents Programme of The Chinese Academy of Sciences and National Natural Science Foundation of China (No. 21101147)

Template-free Synthesis of Porous NiO Hierarchical Structure for High Performance Supercapacitors

  • HUANG Yun ,
  • WU Zhong ,
  • ZHANG Xin-Bo
Expand
  • 1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China. 2. Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130012, Jilin, China. 3. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China

Received date: 2011-12-24

  Revised date: 2012-02-15

  Online published: 2012-02-25

Supported by

This work was financially supported by 100 Talents Programme of The Chinese Academy of Sciences and National Natural Science Foundation of China (No. 21101147)

摘要

应用无模板水热法成功制备了由超薄氧化镍纳米片组装而成的具有分级结构的多孔氧化镍,并研究了其电容性能。结果表明:扫速为20 mV?s-1时,质量比电容值435 F?g-1,循环1000周期之后,电容值基本没有衰减;电流密度为10 A?g-1时,质量比电容值为367 F?g-1。该材料是一种非常有前景的超级电容器材料。

本文引用格式

黄芸 , 吴中 , 张新波 . 无模板法合成具有分级结构的多孔氧化镍及其电容性能研究(英文)[J]. 电化学, 2012 , 18(2) : 151 -156 . DOI: 10.61558/2993-074X.2896

Abstract

A facile and template-free hydrothermal method is proposed to successfully synthesize porous NiO hierarchical structure, which is found to be assembled from ultrathin NiO nanosheets. As for electrochemical pseudocapacitor application, the obtained material exhibits not only high specific capacitances of 435 F?g-1 at 20 mV?s-1 and 367 F?g-1 at 10 A?g-1, but also holds a good electrochemical stability over 1000 cycles at a current rate of 20 mV?s-1. These results suggest that the hierarchical structured porous NiO is a promising supercapacitor electrode material.

参考文献

[1] Conway B E. Electrochemical Supercapacitors [M]. New York: Kluwer Academic/Plenum, 1999.11.
[2] Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nature Materials, 2008, 7(11): 845-854.
[3] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4(5): 366-377.
[4] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
[5] Xie Y B, Fu D G. Supercapacitance of ruthenium oxide deposited on titania and titanium substrates [J]. Materials Chemistry and Physics, 2010, 122(1): 23-29.
[6] Yoon Y S, Cho W I, Lim J H, et al. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films [J]. Journal of Power Sources, 2001, 101(1): 126-129.
[7] Zhang J T, Ma J Z, Zhang L L, et al. Template synthesis of tubular ruthenium oxides for supercapacitor applications [J]. Journal of Physical Chemistry C, 2010, 114(32): 13608-13613.
[8] Sun X, Wang G K, Hwang J Y, et al. Porous nickel oxide nano-sheets for high performance pseudocapacitance materials [J]. Journal of Materials Chemistry, 2011, 21(41): 16581-16588.
[9] Prasad K R, Miura N. Electrochemically deposited nanowhiskers of nickel oxide as a high-power pseudocapacitive electrode [J]. Applied Physics Letters, 2004, 85(18): 4199-4201.
[10] Kim H K, Seong T Y, Lim J H, et al. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrode for thin-film supercapacitors [J]. Journal of Power Sources, 2001, 102(1/2): 167-171.
[11] Gao Y Y, Chen S L, Cao D X, et al. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam [J]. Journal of Power Sources, 2010, 195(6): 1757-1760.
[12] Subramanian V, Zhu H W, Vajtai R, et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructrures [J]. Journal of Physical Chemistry B, 2005, 109(43): 20207-20214.
[13] Wang H L, Casalongue H S, Liang Y Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials [J]. Journal of the American Chemical Society, 2010, 132(21): 7472-7477.
[14] Zhou W J, Zhang J, Xue T, et al. Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors [J]. Journal of Materials Chemistry, 2008, 18(8): 905-910.
[15] Zhang K, Zhang L L, Zhao X S. Graphene/polyaniline nanofiber composites as supercapacitor electrodes [J]. Chemistry of Materials, 2010, 22(4): 1392-1401.
[16] Xia X H, Tu J P, Wang X L, et al. Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material [J]. Journal of Materials Chemistry, 2011, 21(3): 671-679.
[17] Ding S J, Zhu T, Lou X W (David), et al. Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance [J]. Journal of Materials Chemistry, 2011, 21(18): 6602-6606.
[18] Yuan C Z, Zhang X G, Shen L F, et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors [J]. Journal of Materials Chemistry, 2009, 19(32): 5772-5777.
[19] Lang J W, Kong L B, et al. Facile approach to prepare loose-packed NiO nano-?akes materials for supercapacitors [J]. Chemical Communications, 2008, (35): 4213-4215.
[20] Hu J C, Zhu K, Richards R, et al. Preparation and surface activity of single-crystalline NiO (111) nanosheets with hexagonal holes: a semiconductor nanospanner [J]. Advanced Materials, 2008, 20(2): 267-271.
[21] Meher S K, Justin P, Rao G R. Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide [J]. Electrochimica Acta, 2010, 55(28): 8388-8396.
[22] Zhang X J, Shi W H, Zhu J X, et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes [J]. Nano Research, 2010, 3(9): 643-652.
文章导航

/