欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学电源近期研究专辑(武汉大学 杨汉西教授主编)

电化学去合金化Pt(Pd)-Cu对氧的电催化还原活性的研究

  • 杨瑞枝 ,
  • Peter Strasser ,
  • Michael Toney
展开
  • 1.苏州大学能源学院,江苏 苏州 215006; 2.斯坦福大学材料和能源科学研究所,美国 斯坦福 94025; 3.斯坦福国家同步辐射光源中心,美国 斯坦福 94025; 4.柏林科技大学化学化工学院,德国 柏林 10623

收稿日期: 2011-11-24

  修回日期: 2012-01-09

  网络出版日期: 2012-01-19

基金资助

苏州大学青年教师科学基金(No. SDY2011A04)和美国能源部基金(No. DE-AC02-76SF00515; No. LAB04-20)资助

Catalytic Activities of Electrochemically Dealloyed Pt(Pd)-Cu Catalysts for Oxygen Reduction Reaction

  • YANG Rui-Zhi ,
  • Peter Strasser ,
  • Michael Toney
Expand
  • 1. School of Energy, Soochow University, Suzhou, 215006,China; 2. Stanford Institute for Materials and Energy Science, California 94025, USA; 3. Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, California 94025, USA; 4.Department of Chemistry, Chemical Engineering Division, Technical University Berlin, Berlin 10623, Germany

Received date: 2011-11-24

  Revised date: 2012-01-09

  Online published: 2012-01-19

摘要

应用电化学去合金法制备了表面覆盖有Pt(Pd)原子层的Pt(Pd)-Cu合金催化剂,研究该催化剂在0.1 mol?L-1 HClO4酸性溶液中对氧气电化学还原的催化活性,并采用同步辐射反常X-射线衍射法(Anomalous X-ray Diffraction,AXRD)和表面X-射线散射法(Surface X-ray Scattering,SXS)从原子尺度研究了去合金化后催化剂的结构.分析对比纳米颗粒、薄膜和单晶3种不同形式的去合金化Pt-Cu的结构和催化活性以及Pt-Cu和Pd-Cu两种不同合金薄膜的结构和催化活性,结果表明表面应力是影响催化剂催化活性的关键因素,而应力大小则与去合金化后所形成的表面Pt(Pd)层的厚度相关;材料尺寸和组成元素等都影响表面Pt(Pd)层的厚度,提出可利用调控材料表面的应力来设计高催化活性的催化剂.

本文引用格式

杨瑞枝 , Peter Strasser , Michael Toney . 电化学去合金化Pt(Pd)-Cu对氧的电催化还原活性的研究[J]. 电化学, 2012 , 18(2) : 141 -146 . DOI: 10.61558/2993-074X.2895

Abstract

The electrochemically dealloyed Pt(Pd)-Cu catalysts were prepared by electrochemical dealloying of Cu3Pt(Pd) and their catalytic activities toward oxygen reduction reaction (ORR) were studied in 0.1 mol?L-1 HClO4 . solutions. The structural features of the dealloyed Pt(Pd)-Cu were revealed by synchrotron-based anomalous X-ray diffraction (AXRD) and surface X-ray scattering (SXS) at an atomic scale. We established a relationship between the structure and the catalytic activity by comparing the ORR activity and the structure of dealloyed Cu3Pt nanoparticles with similarly dealloyed Cu3Pt thin films and Cu3Pt(111). The enhancement in the activity of the dealloyed Pt(Pd)-Cu is mainly attributed to the strain change in the Pt(Pd) overlayer formed on the surface after dealloying. The strain is related to the thickness of Pt(Pd) overlayer, which is affected by the size of the material and the diffusion coefficient of the constituent element. The catalytic activity for ORR can be tuned by the strain in the surface layer of a catalyst.

参考文献

[1] Zhang J L, Vukmirovic MB, Xu Y, et al. Controlling the catalytic activity of platinum monolayer electrocatalysts for oxygen reduction with different substrates [J]. Angewandte Chemisry International Edition, 2005, 44(14): 2132-2135.
[2] Adzic R R, Zhang J, Sasaki K, et al. Platinum monolayer fuel cell electrocatalysts [J]. Topics in Catalysis, 2007, 46(3/4): 249-262.
[3] Zhou W P, Yang X, Vukmirovic M B, et al. Improving electrocatalysts for O2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd3Fe(111) single-crystal alloy [J]. Journal of the American Chemical Society, 2009, 131(35): 12755-12762.
[4] Stamenkovic V R, Mun B S, Mayrhofer K J J, et al. Effect of surface composition on electronic structure, stability and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces [J]. Journal of the American Chemical Society, 2006, 128(27): 8813-8819.
[5] Stamenkovic V R, Mun B S, Arenz M, et al. Trends in elecrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces [J]. Nature Materials, 2007, 6(3): 241-247.
[6] Chen S, Sheng W, Yabuuchi N, et al. Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures [J]. The Journal of Physical Chemistry C, 2009, 113(3): 1109-1125.
[7] Watanabe M, Tsurumi K, Mizukami T, et al. Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells [J]. Journal of The Electrochemical Society, 1994, 141(10): 2659-2668.
[8] Ding Y, Chen M and Erlebacher J. Metallic mesoporous nanocomposites for electrocatalysis [J]. Journal of the American Chemical Society, 2004,126(22): 6876-6877.
[9] Paffet M T, Beery G J, Gottesfeld S. Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and roughened platnium [J]. Journal of The Electrochemical Society, 1988, 135(6): 1431-1436.
[10] Toda T, Igarashi H, Uchida H, et al. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co [J]. Journal of The Electrochemical Society, 1999, 146(10): 3750-3756.
[11] Stamenkovic V R, Fowler Ben, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability [J]. Science, 2007, 315(5811): 493-497.
[12] Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts [J]. Nature Chemistry, 2010, 2(6): 454-460.
[13] Yu C, Koh S, Leisch J E, et al. Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering(ASAXS) [J]. Faraday Discussion, 2009, 140: 283- 297.
[14] Yang R Z, Leisch J, Strasser P, et al. Structure of dealloyed PtCu3 thin films and catalytic activity for oxygen reduction [J]. Chemistry of Materials, 2010, 22(16): 4712-4720.
[15] Yang R Z, Strasser P and Toney M F. [J]. Dealloying of Cu3Pt (111) studied by surface x-ray scattering. The Journal of Physical Chemistry C, 2011,115(18): 9074-9080.
[16] Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying [J]. Nature, 2010, 410(6827): 450-453.
[17] Snyder J, Fujita T, Chen M W, et al. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts [J]. Nature Material, 2010, 9(11): 904-907.
[18] Zhang Z, Wang Y, Qi Z, et al. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying [J]. The Journal of Physical Chemistry C, 2009,113(29): 12629-12636.
文章导航

/