欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学电源近期研究专辑(武汉大学 杨汉西教授主编)

锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的合成及其高温容量衰减研究

  • 刘文 ,
  • 王苗 ,
  • 陈继涛 ,
  • 张新祥 ,
  • 周恒辉
展开
  • 先进电池材料理论与技术北京市重点实验室,化学与分子工程学院,北京大学,北京100871

收稿日期: 2011-11-24

  修回日期: 2011-12-27

  网络出版日期: 2012-01-15

基金资助

国家高技术研究发展计划(No. 2009AA035200)资助

Synthesis of LiNi0.5Co0.2Mn0.3O2 for lithium Ion Batteries and the Mechanism of Capacity Fading at High Temperature

  • LIU Wen ,
  • WANG Miao ,
  • CHEN Ji-Tao ,
  • ZHANG Xin-Xiang ,
  • ZHOU Heng-Hui
Expand
  • Beijing Key Laboratory in Theory and Technology of Advanced Materials for Batteries, College of Chemistry and Molecular Engineering, Peking University, Beijing, China, 100871

Received date: 2011-11-24

  Revised date: 2011-12-27

  Online published: 2012-01-15

摘要

采用共沉淀-高温固相烧结法合成了富镍型三元复合正极材料LiNi0.5Co0.2Mn0.3O2,恒流充放电测试表明材料在3.0 ~ 4.4 V条件下0.2C放电容量达到179.2 mAh?g-1,但在55 °C经历100次充放电循环后发生急剧的容量衰减。电化学交流阻抗谱、X射线光电子能谱、原子发射光谱等实验表明在高温高电压下,电解液与LiNi0.5Co0.2Mn0.3O2电极材料之间的副反应加剧,导致过渡金属原子溶出,造成该材料局域结构破坏,同时电极材料表面还沉积了高阻抗的LiF/金属氟化物层,使得在电极的充放电过程中电荷转移阻抗和Li+扩散阻抗不断增加,以致电池容量急剧衰减。

本文引用格式

刘文 , 王苗 , 陈继涛 , 张新祥 , 周恒辉 . 锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的合成及其高温容量衰减研究[J]. 电化学, 2012 , 18(2) : 118 -124 . DOI: 10.61558/2993-074X.2890

Abstract

The Ni-rich cathode materials, LiNi0.5Co0.2Mn0.3O2, have been synthesized by Co-precipitation and high-temperature solid-phase sintering method. Constant current charge-discharge tests showed high discharge capacity of 179.2 mAh.g-1 in the 3.0 ? 4.4 V at 0.2C. However, at 55 °C the LiNi0.5Co0.2Mn0.3O2 experienced the dramatic capacity fading after 100 charge-discharge cycles. Electrochemical Impedance Spectroscopy, X-Ray Photoelectron Spectroscopy, Atomic Emission Spectroscopy have been employed to study the capacity fading mechanism of LiNi0.5Co0.2Mn0.3O2 cycled at high temperature in range of high-voltage charge and discharge conditions. It was found that at high temperature under conditions of high-voltage range, the side reactions between the electrolyte and electrode would be accelerated, leading to dissolution of transition metal atoms and resulting in the local structure damage of cathode material. Meanwhile, the byproducts could be deposited on the electrode surface as a high impedance LiF/metal fluoride layer, the charge-transfer resistance and Li+ diffusion resistance were increased, resulting in a sharp capacity degradation.

参考文献

[1] Dahn J R, Von Sacken U, Michal C A. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure [J]. Solid State Ionics, 1990, 44(1/2): 87-97.
[2] Liu Z, Yu A, Lee J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries [J]. Journal of Power Sources, 1999, 81-82: 416-419.
[3] Andersson A M, Edstro?m K. Chemical composition and morphology of the elevated temperature SEI on graphite [J]. Journal of the Electrochemical Society, 2001, 148(10): A1100-A1109.
[4] Liu H. A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coating [J]. Solid State Ionics, 2004, 166(3/4): 317-325.
[5] Chernova N A, Ma M, Xiao J, et al. Layered LixNiyMnyCo1-2yO2 cathodes for lithium ion batteries:? understanding local structure via magnetic properties [J]. Chemistry of Materials, 2007, 19(19): 4682-4693.
[6] Ni J, Zhou H, Chen J, et al. Improved electrochemical performance of layered LiNi0.4Co0.2Mn0.4O2 via Li2ZrO3 coating [J]. Electrochimica Acta, 2008, 53(7): 3075-3083.
[7] Huang Y, Chen J, Cheng F, et al. A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process [J]. Journal of Power Sources, 2010, 195(24): 8267-8274.
[8] Abraham D P, Twesten R D, Balasubramanian M, et al. Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells [J]. Electrochemistry Communications, 2002, 4(8): 620-625.
[9] Kobayashi H, Shikano M, Koike S, et al. Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells [J]. Journal of Power Sources, 2007, 174(2): 380-386.
[10] Sun Y, Myung S, Yoon C S, et al. Improvement of high voltage cycling performances of LiNi1/3Co 1/3Mn1/3O2 at 55 °C by a (NH4)3AlF6 coating [J]. Electrochemical and Solid State Letters, 2009, 12(8): A163-A166.
[11] Lee Y S, Kim S B, Lee K J, et al. Preparation and cycle performance at high temperature for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4 [J]. Journal of Solid-State Electrochemistry, 2010, 14(6): 919-922.
[12] Lee Y S, Kim W S, Kim S B, et al. Remarkable improvement in cell safety for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4 [J]. Journal of Alloys and Compounds, 2010, 492(1/2): L87-L90.
[13] Liu D, Lu Y, Goodenough J B. Rate properties and elevated-temperature performances of LiNi0.5?xCr 2xMn1.5?xO4 (0≤2x≤0.8) as 5 V cathode materials for lithium-ion batteries [J]. Journal of the Electrochemical Society, 2010, 157(11): A1269-A1273.
[14] Park M, Lee J, Choi W, et al. On the surface modifications of high-voltage oxide cathodes for lithium-ion batteries: new insight and significant safety improvement [J]. Journal of Materials Chemistry, 2010, 20(34): 7208-7213.
[15] Lee D, Scrosati B, Sun Y. Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55 °C [J]. Journal of Power Sources, 2011, 196(18): 7742-7746.
[16] Sun Y, Lee B, Noh H, et al. A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries [J]. Journal of Materials Chemistry, 2011, 21(27): 10108-10112.
[17] Lee B R, Noh H J, Myung S T, et al. High-Voltage Performance of Li[Ni0.55Co0.15Mn0.30]O2 positive electrode material for rechargeable Li-ion batteries [J]. Journal of the Electrochemical Society, 2011, 158(2): A180-A186.
[18] Edstrom K, Gustafsson T, Thomas J. The cathode–electrolyte interface in the Li-ion battery [J]. Electrochimica Acta, 2004, 50(2/3): 397-403.
[19] Chen Z Y (陈召勇), Liu X Q (刘兴泉), Gao L Z (高利珍), et al. Electrochemical capacity fading in high temperature of spinel LiMn2O4 and its improvement [J]. Chinese Journal of Inorganic Chemistry (无机化学学报), 2001, 17(3): 325-330.
[20] Nobili F, Croce F, Scrosati B, et al. Electronic and electrochemical properties of LixNi1-yCoyO2 cathodes studied by impedance spectroscopy [J]. Chemistry of Materials, 2001, 13(5): 1642-1646.
[21] Zhang S S, Xu K, Jow T R. Electrochemical impedance study on the low temperature of Li-ion batteries [J]. Electrochimica Acta, 2004, 49(7): 1057-1061.
[22] Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries [J]. Electrochimica Acta, 2010, 55(22): 6332-6341.
[23] Murakami M, Yamashige H, Arai H, et al. Direct evidence of LiF Formation at electrode/electrolyte interface by 7Li and 19F double-resonance solid-state NMR spectroscopy [J]. Electrochemical and Solid-State Letters, 2011, 14(9): A134-A137.
[24] Dahe?ron L, Martinez H, Dedryve?re R, et al. Surface properties of LiCoO2 investigated by XPS analyses and theoretical calculations [J]. The Journal of Physical Chemistry C, 2009, 113(14): 5843-5852.
[25] Myung S, Amine K, Sun Y. Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries [J]. Journal of Materials Chemistry, 2010, 20(34): 7074-7095.
文章导航

/