欢迎访问《电化学(中英文)》期刊官方网站,今天是
中国电化学研究工作系列介绍

熔盐电化学低碳冶金新技术研究

  • 肖巍 ,
  • 朱华 ,
  • 尹华意 ,
  • 汪的华
展开
  • 武汉大学资源与环境科学学院,湖北 武汉 430072

收稿日期: 2011-12-15

  修回日期: 2012-01-05

  网络出版日期: 2012-01-10

基金资助

国家自然科学基金项目(No. 20125308,No. 50374052,No. 20573081,No. 20873093,No. 51071112)资助

Novel Molten-salt Electrolysis Processes towards Low-carbon Metallurgy

  • XIAO Wei ,
  • ZHU Hua ,
  • YIN Hua-Yi ,
  • WANG De-Hua
Expand
  • School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, Hubei, China

Received date: 2011-12-15

  Revised date: 2012-01-05

  Online published: 2012-01-10

摘要

本文重点介绍“氯化物熔盐体系电解还原固态氧化物冶金过程的高效化”和“氯化物熔盐体系电裂解硫化物及熔融碳酸盐与熔融氧化物体系电分解氧化物无温室气体排放冶金”的研究进展,结合武汉大学的部分代表性工作阐述了相关技术的原理,以期揭示熔盐电解技术在节能减排和资源高效利用上的优势及其发展前景,为发展短流程、低碳高效的电化学冶金工业提供理论和技术支持。

关键词: 熔盐; 电化学; 冶金; 低碳

本文引用格式

肖巍 , 朱华 , 尹华意 , 汪的华 . 熔盐电化学低碳冶金新技术研究[J]. 电化学, 2012 , 18(3) : 193 -200 . DOI: 10.61558/2993-074X.2903

Abstract

This review focuses on recent developments in molten-salt electrolytic metallurgical processes with respect to 1) high-efficiency metallurgical technologies via electrolytic reduction of solid oxides in molten chlorides and 2) zero-carbon-footprint electrochemical splitting metallurgical technologies. Initiating with an introduction on dynamic solid/solid/liquid three-phrase interlines electrochemistry for electrochemical reduction of solid cathode, the former aspect is discussed in terms of facilitating mass transfer throughout solid cathode, one-step production of functional alloy powders with the assistance of under-potential electroreduction of active metals and near-net-shape production of metal/alloy components. Whilst the latter is summarized by introducing some zero-carbon molten-salt electrolytic technologies including electro-splitting of solid sulfides in molten chlorides, electrometallurgical technology in molten carbonates and molten oxide electrolysis. With an attempt to demonstrate the proof-of-concept, the merits of molten-salt electrolytic technologies on environmental viability, energy-profitability and resource-utilization are also justified and highlighted, which, as hope, could form a basis for developing novel electrolytic processes for clean, energy-efficient and affordable metallurgy of materials.

参考文献

[1] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride [J]. Nature, 2000, 407(6802): 361-364.
[2] Sadoway D R. Prospects for metals extraction & waste treatment by electrochemical processing in molten salts [C]. Emerging Separation Technologies for Metals II, Minerals, Metals & Materials Soc, Cambridge, MA. 1996: 341-347.
[3] Wang D H (汪的华),Chen Z (陈政). Innovation in molten salt electrochemistry [J]. Journal of Electrochemistry (电化学), 2005, 11(2): 119-124.
[4] Jin X B, Gao P, Wang D H, et al. Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride [J]. Angewandte Chemie-International Edition, 2004, 43(6): 733-736.
[5] Ma M, Wang D H, Wang W G, et al. Extraction of titanium from different titania precursors by the FFC Cambridge process [J]. Journal of Alloys and Compounds, 2006, 420(1/2): 37-45.
[6] Jiang K, Hu X H, Ma M, et al. "Perovskitization"-assisted electrochemical reduction of solid TiO2 in molten CaCl2 [J]. Angewandte Chemie-International Edition, 2006, 45 (3): 428-432.
[7] Li W, Jin X B, Huang F L, et al. Metal-to-oxide molar volume ratio: the overlooked barrier to solid-State electroreduction and a "green" bypass through recyclable NH4HCO3 [J]. Angewandte Chemie-International Edition, 2010, 49(18): 3203-3206.
[8] Peng J J, Jiang K, Xiao W, et al. Electrochemical conversion of oxide precursors to consolidated Zr and Zr-2.5Nb tubes [J]. Chemical Materials, 2008, 20(23): 7274-7280.
[9] Qiu G H, Ma M, Wang D H, et al. Metallic cavity electrodes for investigation of powders [J]. Journal of the Electrochemical Society, 2005, 152(10): E328-E336.
[10] Li G M, Wang D H, Jin X B, et al. Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission [J]. Electrochemistry Communications, 2007, 9(8): 1951-1957.
[11] Wang T, Gao H P, Jin X B, et al. Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl–KCl [J]. Electrochemistry Communications, 2011, 13(12): 1492-1495.
[12] Wu T, Xiao W, Jin X B, et al. Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2 [J]. Physical Chemistry Chemical Physics, 2008, 10(13): 1809-1818.
[13] Wu T, Jin X B, Xiao W, et al. Thin pellets: fast electrochemical preparation of capacitor tantalum powders [J]. Chemistry of Materials, 2007, 19(2): 153-160.
[14] Li G M, Wang D H, Chen G Z. Direct reduction of solid Fe2O3 in molten CaCl2 by potentially green process [J]. Journal of Materials Science & Technology, 2009, 25(6): 767-771.
[15] Wang D H, Qiu G H, Jin X B, et al. Electrochemical metallization of solid terbium oxide [J]. Angewandte Chemie-International Edition, 2006, 45(15): 2384-2388.
[16] Peng J J, Chen H L, Jin X B, et al. Phase-tunable fabrication of consolidated (α+β)-TiZr alloys for biomedical applications through molten salt electrolysis of solid oxides [J]. Chemistry of Materials, 2009, 21(21): 5187-5195.
[17] Ma M, Wang D H, Hu X H, et al. A direct electrochemical route from ilmenite to hydrogen-storage ferrotitanium alloys [J]. Chemistry-A European Journal, 2006, 12(19): 5075-5081.
[18] Zhu Y, Ma M, Wang D H, et al. Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy [J]. Chinese Science Bulletin, 2006, 51(20): 2535-2540.
[19] Peng J J, Zhu Y, Wang D H, et al. Direct and low energy electrolytic co-reduction of mixed oxides to zirconium-based multi-phase hydrogen storage alloys in molten salts [J]. Journal of Materials Chemistry, 2009, 19(18): 2803-2809.
[20] Qiu G H, Wang D H, Jin X B, et al. A direct electrchemical route from oxide precursors to the terbium-nickel intermetallic compound TbNi5 [J]. Electrochimica Acta, 2006, 51(26): 5785-5793.
[21] Qiu G H, Wang D H, Jin X B, et al. Preparation of Tb2Fe17 by direct electrochemical reduction of Tb4O7-Fe2O3 pellet in molten calcium chloride [J]. Acta Metallurgica Sinica, 2008, 44(7): 859-862.
[22] Qiu G H, Wang D H, Ma M, et al. Electrolytic synthesis of TbFe2 from Tb4O7 and Fe2O3 powders in molten CaCl2 [J]. Journal of Electroanalytical Chemistry, 2006, 589(1): 139-147.
[23] Yin H Y, Tang D Y, Zhu H, et al. Production of iron and oxygen in molten K2CO3-Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode [J]. Electrochemistry Communications, 2011, 13(12): 1521-1524.
[24] Deng Y, Wang D H, Xiao W, et al. Electrochemistry at conductor/insulator/electrolyte three-phase interlines: A thin layer model [J]. Journal of Physical Chemistry B, 2005, 109(29): 14043-14051.
[25] Xiao W, Jin X B, Deng Y, et al. Three-phase interlines electrochemically driven into insulator compounds: A penetration model and its verification by electroreduction of solid AgCl [J]. Chemistry-A European Journal, 2007, 13(2): 604-612.
[26] Xiao W, Jin X B, Deng Y, et al. Electrochemically driven three-phase interlines into insulator compounds: Electroreduction of solid SiO2 in molten CaCl2 [J]. ChemPhysChem, 2006, 7(8): 1750-1758.
[27] Yin H Y, Gao L L, Zhu H, et al. On the development of metallic inert anode for molten CaCl2-CaO System [J]. Electrochimica Acta, 2011, 56(9): 3296-3302.
[28] Qiu G H, Jiang K, Ma M, et al. Roles of cationic and elemental calcium in the electro-reduction of solid metal oxides in molten calcium chloride [J]. Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences, 2007, 62(5/6): 292-302.
[29] Wang D H, Jin X B, Chen G Z. Solid state reactions: an electrochemical approach in molten salts [J]. Annual Reports Section "C" (Physical Chemistry), 2008, 104: 189-234.
[30] Centeno-Sanchez RL, Fray DJ, Chen GZ. Study on the reduction of highly porous TiO2 precursors and thin TiO2 layers by the FFC-Cambridge process [J]. Journal of Materials Science, 2007, 42(17): 7494-7501.
[31] Dring K, Dashwood R, Inman D. Voltammetry of titanium dioxide in molten calcium chloride at 900 °C [J]. Journal of Electroanalytical Chemistry, 2005, 152(3): E104-E113.
[32] Dring K, Dashwood R, Inman D. Predominance diagrams for electrochemical reduction of titanium oxides in molten CaCl2 [J]. Journal of Electroanalytical Chemistry, 2005, 152(10): D184-D190.
[33] Yasuda K, Nohira T, Takahashi K, et al. Electrolytic reduction of a powder-molded SiO2 pellet in molten CaCl2 and acceleration of reduction by Si addition to the pellet [J]. Journal of the Electrochemical Society, 2005, 152 (12): D232-D237.
[34] Zhu Y, Wang D H, Ma M, et al. More affordable electrolytic LaNi5-type hydrogen storage powder [J]. Chemical Communications, 2007, 24: 2515-2517.
[35] Ge X L, Wang X D, Seetharaman S. Copper extraction from copper ore by electro-reduction in molten CaCl2-NaCl [J]. Electrochimica Acta, 2009, 54 (18): 4397-4402.
[36] Wang D H, Gmitter A J, Sadoway D R. Production of oxygen gas and liquid metal by electrochemical decomposition of molten Iron oxide [J]. Journal of the Electrochemical Society, 2011, 158(6): E51-E54.
[37] Vai A T, Yurko J A, Wang D H, Sadoway D R, Molten oxide electrolysis for lunar oxygen generation using in situ resources [C]. Jim Evans Honorary Symposium, eds. B.Q. Li, B.G. Thomas, L. Zhang, F.M. Doyle, and A.P. Campbell, TMS Annual Meeting 2010, Seattle Washington, p. 301-308.
文章导航

/