[1] Ceder G. Opportunities and challenges for first-principles materials design and applications to Li battery materials [J]. MRS Bulletin, 2010, 35(9): 693-701.
[2] Meng Y S, Arroyo-de Dompablo M E. First principles computational materials design for energy storage materials in lithium ion batteries [J]. Enery & Environmental Science, 2009, 2(6): 589-609.
[3] Guo Y G(郭玉国), Wang Z L(王忠丽), Wu X L(吴兴隆), et al. Nano/Micro-structured electrode materials for lithium-ion batteries [J]. Journal of Eletrochemistry(电化学), 2010, 16(2): 119-124.
[4] Ai X P(艾新平), Cao Y L(曹余良),Yang H X(杨汉西). Self-activating safety mechanisms for Li-ion batteries [J]. Journal of Eletrochemistry(电化学), 2010, 16(1): 6-10.
[5] Gong Z L, Yang Y. Recent advances in there search of polyanion-type cathode materials for Li-ion batteries [J]. Energy & Environmental Science, 2011, 4(9): 3223-3242.
[6] Luo J Y, Cui W J, He P, et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte [J]. Nature Chemistry 2010, 2: 760-765.
[7] Chen J, Cheng F Y. Combination of light weight elements and nanostructured materials for batteries [J]. Accounts of Chemical Research, 2009, 42(6): 713-723.
[8] Armand M, Tarascon J M. Building better batteries [J]. Nature 2008, 451(7179): 652-657.
[9] Wu D H, Zhou Z. Recent progress of computational investigation on anode materials in Li ion batteries [J]. Frontiers of Physics, 2011, 6(2): 197-203.
[10] Zhao J J, Buldum A, Han J, et al. First-principles study of Li-intercalated carbon nanotube ropes [J]. Physical Review Letters, 2000, 85(8): 1706-1709.
[11] Landi B J, Ganter M J, Cress C D, et al. Carbon nanotubes for lithium ion batteries [J]. Energy & Environmental Science, 2009, 2: 638-654.
[12] Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano Letters, 2008, 8(8): 2277-2282.
[13] Zhang W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries [J]. Journal of Power Sources, 2011, 196: 13-24.
[14] Huggins R A. Lithium alloy negative electrodes [J]. Journal of Power Sources, 1999, 81: 13-19.
[15] Tao Z L(陶占良), Wang H B(王洪波), Chen J(陈军). Si-based materials as the anode of lithium-ion batteries [J]. Progress in Chemistry(化学进展), 2011, 23(2/3): 318-327.
[16] Chan C K, Zhang X F, Cui Y. High capacity Li ion battery anodes using Ge nanowires [J]. Nano Letters, 2007, 8 (1): 307-309.
[17] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochimica Acta, 1999, 45: 31-50.
[18] Wang G X, Sun L, Bradhurst D H, et al. Innovative nanosize lithium storage alloys with silica as active centre [J]. Journal of Power Sources, 2000, 88(2): 278-281.
[19] Fransson L M L, Vaughey J T, Benedek R, et al. Phase transitions in lithiated Cu2Sb anodes for lithium batteries: An in situ X-ray diffraction study [J]. Electrochemistry Communications, 2001, 3(7): 317-323.
[20] Armstrong A R, Armstrong G, Canales J, et al. Lithium-ion intercalation into TiO2-B nanowires [J]. Advanced Materials, 2005, 17(7): 862-865.
[21] Ferg E, Gummow R J, Kock A D, et al. Spinel anodes for lithium-ion batteries [J]. Journal of the Electrochemical Society, 1994, 141(11): L147-L150.
[22] Colbow K M, Dahn J R, Haering R R. Structure and electrochemistry of the spinel oxides LiTi2O4 and Li4/3Ti5/3O4 [J]. Journal of Power Sources, 1989, 26(3-4): 397-402.
[23] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407(6803): 496-499.
[24] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4(5): 366-377.
[25] Poizot P, Laruelle S, Grugeon S, et al. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li [J]. Journal of the Electrochemical Society, 2002, 149(9): A1212-A1217.
[26] Bruce P G, Scrosati B and Tarascon J M. Nanomaterials for rechargeable lithium batteries [J]. Angewandte Chemie International Edition, 2008, 47(16): 2930-2946.
[27] Boyanov S, Bernardi J, Bekaert E, et al. P-Redox mechanism at the origin of the high lithium storage in NiP2-based batteries [J]. Chemistry of Materials, 2008, 21(2): 298-308.
[28] Boyanov S, Bernardi J, Gillot F, et al. FeP: Another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process [J]. Chemistry of Materials, 2006, 18(15): 3531-3538.
[29] Zhou Z, Zhao J J, Gao X P, et al. Do composite single-walled nanotubes have enhanced capability for lithium storage? [J]. Chemistry of Materials, 2005, 17: 992-1000.
[30] Wang X, Zeng Z, Ahn H., et al. First-principles study on the enhancement of lithium storage capacity in boron doped graphene [J]. Applied Physics Letters, 2009, 95(18): 183103.
[31] Zhong Z, Ouyang C, Shi S, et al. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries [J]. ChemPhysChem, 2008, 9(14): 2104-2108.
[32] Armstrong A R, Arrouvel C, Gentili V, et al. Lithium coordination sites in LixTiO2(B): A structural and computational Study [J]. Chemistry of Materials, 2010, 22(23): 6426-6432.
[33] Kim H, Chou C Y, Ekerdt J G, et al. Structure and properties of Li?Si alloys: A first-Principles study [J]. Journal of Physical Chemistry C, 2011, 115(5): 2514-2521.
[34] Chou C Y, Kim H and Hwang G S. First-principles study of structure, energetics, and properties of Li–M (M = Si, Ge, Sn) alloys [J]. Journal of Physical Chemistry C, 2011, 115(40): 20018-20026.
[35] Goodenough J B and Kim Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22: 587-603.
[36] Peng B, Cheng F Y, Tao Z L, et al. Lithium transport at silicon thin ?lm: Barrier for high-rate capability anode [J]. The Journal of Chemical Physics, 2010, 133: 034701.
[37] Meunier V, Kephart J, Roland C, et al. Ab initio investigations of lithium diffusion in carbon nanotube systems [J]. Physical Review Letters, 2002, 88(7): 075506.
[38] Gao B, Bower C, Lorentzen J D, et al. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes [J]. Chemical Physics Letters, 2000, 327(1/2): 69-75.
[39] Uthaisar C and Barone V. Edge effects on the characteristics of Li diffusionin graphene [J]. Nano Letters, 2010, 10: 2838-2842.
[40] Arrouvel C, Parker S C and Islam M S. Lithium insertion and transport in the TiO2-B anode material: A computational Study [J]. Chemistry of Materials, 2009, 21(20): 4778-4783.
[41] Courtney I A, Tse J S, Mao O, et al. Ab initio calculation of the lithium-tin voltage profile [J]. Physical Review B, 1998, 58(23): 15583.
[42] Doe R. E, Persson K A, Meng Y S, et al. First-principles investigation of the Li?Fe?F phase Diagram and equilibrium and nonequilibrium conversion reactions of Iron fluorides with lithium [J]. Chemistry of Materials, 2008, 20(16): 5274-5283.
[43] Matsuno S, Noji M, Kashiwagi T, et al. Construction of the ternary phase diagram for the Li?Cu?Sb system as the anode material for a lithium ion battery [J]. Journal of Physical Chemistry C, 2007, 111(20): 7548-7553.
[44] Mason T H, Liu X, Hong J, et al. Novel Conversion reactions for high-capacity Li-ion battery anodes in the Li–Mg–B–N–H system [J]. Journal of Physical Chemistry C, 2011, 115(33): 16681-16687.
[45] Sethuraman V A, Chon M J, Shimshak M, et al. In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation [J]. Journal of Power Sources, 2010, 195(15): 5062-5066.
[46] Zhao K, Wang W L, Gregoire J, et al. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: A first-principles theoretical study [J]. Nano Letters, 2011, 11(7): 2962-2967.
[47] Ceder G, Chiang Y M, Sadoway D. R., et al. Identification of cathode materials for lithium batteries guided by first-principles calculations [J]. Nature, 1998, 392(6677): 694-696.
[48] Peng Z, Shi Z, Liu M. Mesoporous Sn-TiO composite electrodes for lithium batteries [J]. Chemical Communications, 2000 (21): 2125-2126.
[49] Wu Y P, Rahm E, Holze R. Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries [J]. Electrochimica Acta, 2002, 47(21): 3491-3507.
[50] Koudriachova M V, Harrison N M. Li sites and phase stability in TiO2-anatase and Zr-doped TiO2-anatase [J]. Journal of Materials Chemistry, 2006, 16(20): 1973-1977.
[51] Imai Y, Watanabe A. Energetic evaluation of possible stacking structures of Li-intercalation in graphite using a first-principle pseudopotential calculation [J]. Journal of Alloys and Compounds, 2007, 439(1/2): 258-267.
[52] Persson K, Hinuma Y, Meng S Y. Thermodynamic and kinetic properties of the Li-graphite system from ?rst-principles calculations [J]. Physical Review B, 2010, 82(12): 125416.