欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究快讯

锂空气电池空气电极LiCoO2电催化性能研究

  • 高军 ,
  • 武巍 ,
  • 田艳艳 ,
  • 杨勇
展开
  • 厦门大学 固体表面物理化学国家重点实验室,化学化工学院化学系,福建 厦门 361005

收稿日期: 2011-11-28

  修回日期: 2011-12-09

  网络出版日期: 2011-12-20

基金资助

国家973计划课题(No. 2011CB935903)资助

The Electrocatalytic Study of LiCoO2 in Air Electrode for Lithium-air

  • GAO Jun ,
  • WU Wei ,
  • TIAN Yan-Yan ,
  • YANG Yong
Expand
  • State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2011-11-28

  Revised date: 2011-12-09

  Online published: 2011-12-20

摘要

自设计建立锂空气电池实验装置,研究以掺入LiCoO2做为电催化剂的空气正极的电化学性能及其放电前后催化剂结构的变化. 循环伏安、XRD、及充放电测试等表明,LiCoO2能够很大程度地改善空气电极的放电性能. 尤其是在放电前,将掺有LiCoO2的空气正极充电至4.1V,此时LiCoO2的Co元素呈现较高的价态(Co3+/Co4+),催化作用因此更加显著.

本文引用格式

高军 , 武巍 , 田艳艳 , 杨勇 . 锂空气电池空气电极LiCoO2电催化性能研究[J]. 电化学, 2012 , 18(1) : 14 -17 . DOI: 10.61558/2993-074X.2873

Abstract

The LiCoO2 has been investigated as a new electrocatalyst for air electrodes using homemade lithium-air battery. The electrochemical performance and structural changes of the LiCoO2 based composite air electrodes have been studied. The results of CV, XRD and charge-discharge tests show that the composite air electrodes composed of LiCoO2 can greatly improve the discharge performance of lithium-air batteries. In particular when the composite air electrodes are charged to 4.1 V before further discharging, the obvious catalytic effects of LiCoO2 are attributed to higher valence state of the Co element in LiCoO2, esp. at charged state.

参考文献

[1] Littauer E L, Tsai K C. Anodic behavior of lithium in aqueous electrolytes [J]. Journal of the Electrochemical Society, 1976, 123(6): 771-776.
[2] Abraham K M, Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery [J]. Journal of the Electrochemical Society, 1996, 143(1): 1-5.
[3] Read J, Mutolo K, Ervin M, et al. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery [J]. Journal of the Electrochemical Society, 2003, 150(10): A1351-A1356.
[4] Endo M, Kim C, Nishimura K, et al. Recent development of carbon materials for Li ion batteries [J]. Carbon, 2000, 38(2): 183-197.
[5] Fang Z Q, Hu M, Liu W X, et al. Preparation and electrochemical property of three-phase gas-diffusion oxygen electrodes for metal air battery [J]. Electrochimica Acta, 2006, 51(26): 5654-5659.
[6] Read J. Characterization of the lithium/oxygen organic electrolyte battery [J]. Journal of the Electrochemical Society, 2002, 149(9): A1190-A1195.
[7] Debart A, Bao J, Armstrong G, et al. An O-2 cathode for rechargeable lithium batteries: The effect of a catalyst [J]. Journal of Power Sources, 2007, 174(2): 1177-1182.
[8] Lu Y C, Xu Z C, Gasteiger H A, et al. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries [J]. Journal of the American Chemical Society, 2010, 132(35): 12170-12171.
[9] Ren X M, Zhang S S, Tranand D T, et al. Oxygen reduction reaction catalyst on lithium/air battery discharge performance [J]. Journal of Materials Chemistry, 2011, 21(27): 10118-10125.
[10] Zhang S S, Foster D, Read J. A high energy density lithium/sulfur-oxygen hybrid battery [J]. Journal of Power Sources, 2010, 195(11): 3684-3688.
[11] Xiao J, Xu W, Wang D Y, et al. Hybrid air-electrode for Li/air batteries [J]. Journal of the Electrochemical Society, 2010, 157(3): A294-A297.
文章导航

/