应用循环伏安、方波伏安和交流阻抗法研究了Keggin型缺位硅钨杂多阴离子SiW11O398-(SiW11)在0.1mol?L-1 NaHSO4 + Na2SO4溶液中的电化学性质及其对H2O2还原的间接电催化作用。结果表明,SiW11的酸性水溶液在玻碳(GC)电极上显示两对可逆的还原-氧化波,对应的电荷迁移数均为1,且有2个质子参与反应。根据第1对波的还原峰电流与扫描速率平方根关系得到SiW11在溶液中的扩散系数Do为8.92×10-6 cm2?s-1。SiW11对H2O2的还原具有明显的电催化活性,催化峰电位随溶液pH的降低而正移,峰电流增大。质子H+在催化反应中起协同促进作用。实验测定该电催化过程的均相准一级反应速率常数为0.30 s-1。SiW11电催化还原H2O2的机理被认为该反应是经过形成所谓“七配位过氧化物”而发生的。
刘希龙
,
吴春燕
,
周方
,
刘红生
,
华英杰
,
王崇太
,
刘晓旸
. Keggin型缺位硅钨杂多阴离子的电化学性质及电催化还原H2O2[J]. 电化学, 2012
, 18(2)
: 174
-180
.
DOI: 10.61558/2993-074X.2900
Electrochemical properties of the Keggin-type lacunary heteropolysilicate anion SiW11O398- (SiW11) and its indirect electrocatalysis for H2O2 reduction in the supporting electrolyte containing 0.1 mol?L-1 NaHSO4 and Na2SO4 solutions were investigated using cyclic voltammetry, square wave voltammetry and alternating current impedance spectroscopy. Experimental results indicated that SiW11 showed two pairs of reversible redox waves on the glassy carbon (GC) electrode in an acidic solution. The electron transfer number corresponding to the two pairs of waves was one, and the proton transfer number involved was two during the electrode reaction. The diffusion coefficient (D0) of SiW11 calculated from the linear relationship of peak current versus square root of potential scan rate was determined to be 8.92×10-6 cm2?s-1 in 0.1 mol?L-1 NaHSO4 and Na2SO4 solutions. The SiW11 displayed an obvious electrocatalytic activity for the H2O2 reduction. The electrocatalytic peak potential moved to positive direction with the decrease in the solution pH, and the peak current increased. The electrocatalytic process was facilitated by proton through a synergic effect. The pseudo-first order rate constant of the homogeneous reaction was determined to be 0.30 s-1. The indirect electrocatalytic process of SiW11 towards H2O2 reduction was considered to take place through a mechanism involved in a so-call “the seven-coordinate W-O peroxo species”.
[1] Rong C Y, Pope M T. Lacunary polyoxometalate anions are .pi.-acceptor ligands. Characterization of some tungstoruthenate(II,III,IV,V) heteropolyanions and their atom-transfer reactivity [J]. Journal of the American Chemical Society, 1992, 114(8): 2932-2938.
[2] Jorgensen K A. Transition-metal-catalyzed epoxidations [J]. Chemical Reviews, 1989, 89(3): 431-458.
[3] Josrgensen K A, Schistt B. Metallaoxetanes as intermediate in oxygen-transfer reactions - reality or fiction? [J]. Chemical Reviews, 1990, 90(8): 1483-1506.
[4] Drago R S. Homogeneous metal-catalyzed oxidations by O2 [J]. Coordination Chemical Reviews, 1992, 117(22): 185-213.
[5] Wang C T, Hua Y J, Li G R, et al. Indirect cathodic electrocatalytic degradation of dimethylphthalate with PW11O39Fe(III)(H2O)4? and H2O2 in neutral aqueous medium [J]. Electrochimica Acta, 2008, 53(16): 5100-5105.
[6] Wang C T, Hua Y J, Tong Y X. A novel Electro-Fenton-Like system using PW11O39Fe(III)(H2O)4? as an electrocatalyst for wastewater treatment [J]. Electrochimica Acta, 2010, 55(22): 6755-6760.
[7] Hua Y J (华英杰), Wang C T (王崇太), Tong Y X (童叶翔), et al. Electrocatalytic degradation of nitrobenzene with Keggin-type PW11O39Fe(III)(H2O)4- [J]. Acta Chimica Sinica (化学学报), 2009, 67(23): 2650-2654.
[8] Wang C T (王崇太), Hua Y J (华英杰), Hua S Y (华淑艳), et al. Photocatalytic degradation of nitrobenzene with Keggin-type Fe(III)-Substituted Heteropolyanion PW11O39Fe(III)(H2O)4- [J]. Acta Chimica Sinica (化学学报), 2010, 68(11): 1037-1042.
[9] Wang C T (王崇太), Hua Y J (华英杰), Li G R (李高仁), et al. Electrocatalytic oxidation of 4-methylpyridine by Cr(III)-substituted phosphorus Heteropolytungstate [J]. Acta Chimica Sinica (化学学报), 2008, 66(8): 835-840.
[10] Server-Carrio J, Bas-Serra J, Gonzalez-Nunez M E, et al. Synthesis, characterization, and catalysis of β3-[(CoIIO4)W11O31(O2)4]10-, the first Keggin-based true heteropoly dioxygen(Peroxo) anion. Spectroscopic (ESR, IR) evidence for the formation of superoxo polytungstates [J]. Journal of the American Chemical Society, 1999, 121(5): 977-984.
[11] Lei P X, Chen C C, Yang J, et al. Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation [J]. Environmental Science &Technology, 2005, 39(21): 8466-8474.
[12] Hua Y J (华英杰), Wang C T (王崇太), Li G R (李高仁), et al. Electrochemical properties of the Keggin-type lacunary heteropolytungstate anion and its electrocatalysis for H2O2 reduction [J]. Acta Chimica Sinica (化学学报), 2009, 67(8): 795-800.
[13] Hua Y J (华英杰), Wang C T (王崇太), Wei J C(韦吉崇), et al. Electrocatalytic degradation of nitrobenzene by Keggin-type lacunary heteropolyanion PW11O397- [J]. Acta Chimica Sinica (化学学报), 2010, 68(19): 1961-1964.
[14] Brevard C, Schimpf R, Tourné G, et al. Tungsten-183 NMR: A complete and unequivocal assignment of the tungsten-tungsten connectivities in heteropolytungstates via two-dimensional 183W NMR techniques [J]. Journal of the American Chemical Society, 1983, 105(24): 7059-7063.
[15] Sadakane M, Steckhan E. Investigation of the manganese-substituted α-Keggin-heteropolyanion K6SiW11O39Mn(H2O) by cyclic voltammetry and its application as oxidation catalyst [J]. Journal of the Molecular Catalysis A: Chemistry, 1996, 114(3): 221-228.
[16] Bard A J, Faulkner L R. Electrochemical method, principle and application (电化学方法,原理及应用) [M]. Beijing: Chemical Industry Press, 1986.
[17] Wang C T (王崇太), Hua Y J (华英杰). Concise electro-chemistry principle and application (简明电化学原理及应用) [M]. Haikou: Hainan Press, 2008.
[18] Toth J E, Melton J D, Cabelli D, et al. Electrochemistry and redox chemistry of aquaferrotungstosilicate, H2OFeIIISiW11O395- in the presence of hydrogen peroxide and hydroxyl [M]. Inorganic Chemistry, 1990, 29(10): 1952-1957.