以氧化处理的碳纤维刷(Carbon fibre brush,CFB)作阴极材料,提出海水超级电容溶解氧电池(Seawater battery with electrochemical capacitance, SWB-EC)概念,并制造了3台联用实海测试样机. 分别由循环伏安和稳态恒流放电方法研究了氧化处理前后的CFB和镁合金牺牲阳极的放电性能. 结果表明:氧化处理的CFB具有准电容特性,在动态海水中其氧阴极还原反应(Oxygen reduction reaction, ORR)活性比未处理的CFB有大幅度提高;镁合金牺牲阳极的开路电位为-1.74 V,工作电位高,溶解较均匀. 用以上阴、阳极材料制成3台联用样机作连续实海放电测试,经运行2个月,相关实验数据分析表明:与商品化海水电池SWB1200初步相比,该海水超级电容溶解氧电池具有更高的体积比功率密度.
徐海波
,
芦永红
,
张伟
,
于砚廷
,
严川伟
,
孙亚萍
,
钟莲
,
刘建国
,
郑轶
,
韩冰
,
王永良
. 海水超级电容溶解氧电池[J]. 电化学, 2012
, 18(1)
: 24
-30
.
DOI: 10.61558/2993-074X.2875
A new concept of seawater battery with electrochemical capacitance (SWB-EC) has been proposed using carbon fibre brush (CFB) as the cathode material, and three testing prototypes have been made accordingly. The discharge performances of the CFB before- and after-oxidation and Mg alloy sacrifice anode were studied by cyclic voltammetry and constant current discharge tests under steady state conditions. Results show that the oxidized CFB exhibits the pseudo-capacitive characteristic and its activity of oxygen reduction reaction (ORR) in stirred seawater highly increases, comparing with the non-oxidized CFB. The open circuit potential of Mg alloy sacrifice anode is -1.74 V, having the advantages of high working potential and uniform dissolution. The consecutive marine discharge test is conducted for prototypes made of the oxidized CFB cathode and Mg alloy sacrifice anode. The preliminary data collected in two months reveals that comparing with the commercial seawater battery—SWB1200, the home-made SWB-EC achieves a higher volume specific power density.
[1] China 21st century agenda management center & National marine technology center(中国21世纪议程管理中心, 国家海洋技术中心编). Marine high technology development[M].Beijing:Marine Press, 2009.
[2] Shinohara M, Araki E, Mochizuki M, et al. Practical application of a sea-water battery in deep-sea basin and its performance [J]. Journal of Power Sources, 2009, 187(1): 253-260.
[3] Hasvold ?, Lian T, Haakaas E, et al. CLIPPER: a long-range, autonomous underwater vehicle using magnesium fuel and oxygen from the sea [J]. Journal of Power Sources, 2004, 136(2): 232-239.
[4] Song Y S (宋玉苏), Wang S Z (王树宗). Research and application of seawater battery[J]. Torpedo Technology (鱼雷技术), 2004, 12(2): 4-8.
[5] Sun L M(孙丽美), Cao D X(曹殿学), Wang G L(王贵领), et al. Metal semi-fuel cells for underwater power source[J]. Chinese Journal of Power Sources (电源技术), 2008, 32(5): 339-342.
[6] Hasvold ?, Henriksen H, Melv?r E, et al. Sea-water battery for subsea control systems [J]. Journal of Power Sources, 1997, 65(1/2): 253-261.
[7] Xu H B, Fan X Z, Lu Y H, et al. Preparation of an electrochemically modified graphite electrode and its electrochemical performance for pseudo-capacitors in a sulfuric acid electrolyte [J]. Carbon, 2010, 48(11): 3300-3303.
[8] Fan X Z, Lu Y H, Xu H B, et al. Reversible redox reaction on the oxygen-containing functional groups of an electrochemically modified graphite electrode for the pseudo-capacitance [J]. Journal of Materials Chemistry, 2011, 21(46):18753-18760.
[9] Wilcock W S D, Kauffman P C. Development of a seawater battery for deep-water applications [J]. J. Power Sources, 1997, 66: 71-75.