欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

(PhMgCl)2-AlCl3在混合醚溶剂中的电化学性能研究

  • 王菲菲 ,
  • 郭永胜 ,
  • 杨军 ,
  • 努丽燕娜 ,
  • 王久林
展开
  • 上海交通大学化学化工学院,上海 200240

收稿日期: 2011-11-03

  修回日期: 2011-11-30

  网络出版日期: 2011-12-08

基金资助

国家重点基础研究发展计划973课题(2007CB209700)资助

Electrochemical Characterization of (PhMgCl)2-AlCl3/Mixed Ether Electrolytes

  • WANG Fei-Fei ,
  • GUO Yong-Sheng ,
  • YANG Jun ,
  • NU Li-Yan-Na ,
  • WANG Jiu-Lin
Expand
  • School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2011-11-03

  Revised date: 2011-11-30

  Online published: 2011-12-08

摘要

制备了全苯基有机铝镁盐(PhMgCl)2-AlCl3,研究以3种不同混合醚,即dimethoxyethane (DME)+THF、Diglyme (DG)+THF和Tetraglyme (TG)+THF作溶剂对全苯基有机铝镁盐在不同金属电极上的电化学性能的影响. 结果表明,和(PhMgCl)2-AlCl3/THF体系相比,(PhMgCl)2-AlCl3/DG+THF(3:2)仍具有较高的离子电导率(1.605×10-3 S?cm-1)、良好的可逆沉积镁特性及阳极抗氧化性能(电化学窗口大于2.8 V). 且该DG+THF混合溶剂还可大幅降低电解液的饱和蒸汽压(由23.46 kPa降低到9.41 kPa),减少了电池使用过程电解液的挥发,从而提高了可充镁电池的安全性能. 比较Pt、Ni、Cu和Al等不同金属基质电极,发现Pt的电化学性能最好,而Al最差.

本文引用格式

王菲菲 , 郭永胜 , 杨军 , 努丽燕娜 , 王久林 . (PhMgCl)2-AlCl3在混合醚溶剂中的电化学性能研究[J]. 电化学, 2012 , 18(1) : 56 -61 . DOI: 10.61558/2993-074X.2880

Abstract

The (PhMgCl)2-AlCl3 salts were prepared and the electrochemical properties of (PhMgCl)2-AlCl3 electrolytes containing dimethoxyethane(DME)+THF, Diglyme(DG)+THF and Tetraglyme(TG)+THF solvents with different proportions on various metal electrodes were studied. Compared with (PhMgCl)2-AlCl3/THF, the (PhMgCl)2-AlCl3/DG+THF(3:2) solvents showed high ionic conductivity of 1.605×10-3 S?cm-1, good reversible Mg deposition behavior and anodic anti-oxidation performance with an electrochemical window wider than 2.8 V. In addition, the DG+THF mixed solvent could greatly lower the saturated vapor pressure by reducing from 23.46 kPa to 9.41 kPa, which suppresses volatilization of the electrolyte and improves the overall safety of rechargeable battery. Among Pt, Ni, Cu and Al electrodes, Pt offers the best electrochemical properties, while Al the worst.

参考文献

[1] Besenhard J O, Winter M. Advances in battery technology: rechargeable magnesium batteries and novel negative electrode materials for lithium ion batteries [J]. Chemphyschem, 2002, 3(2): 155-159.
[2] Gregory T D, Hoffman R J, Winterton R C. Development of an ambient secondary magnesium battery [J]. Journal of the Electrochemical Society, 1990, 137(3): 775-780.
[3] Levi E, Gofer Y, Aurbach D. On the Way to Rechargeable Mg Batteries: The challenge of new cathode materials [J]. Chemistry of Materials, 2010, 22(3): 860-868.
[4] Lossius L P, Emmenegger F. Plating of magnesium from organic solvents [J]. Electrochimica Acta, 1996, 41(3): 445-447.
[5] Aurbach D, Gofer Y, Lu Z, et al. A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes [J]. Journal of Power Sources, 2001, 97(8): 269-273.
[6] Liebenow C. Reversibility of electrochemical magnesium deposition from Grignard solutions [J]. Journal of Applied Electrochemistry, 1997, 27(2): 221-225.
[7] Liebenow C, Yang Z, Lobitz P. The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates [J]. Electrochemistry Communications, 2000, 2(9): 641-645.
[8] Guo Y S, Yang J, NuLi Y N, et al. Study of electronic effect of Grignard reagents on their electrochemical behavior [J]. Electrochemistry Communications, 2010, 12(2): 1671-1673.
[9] Aurbach D, Lu Z, Schechter A, etal. Prototype system for rechargeable magnesium batteries [J]. Nature, 2000, 407(6805): 724-727.
[10] Oren Mizrahi, Nir Amir, Aurbach D, et al. Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries [J]. Journal of the Electrochemical Society, 2007, 155(2): A103-A109.
[11] Aurbach D, Gizbar H, Schechter A, et al. Electrolyte solutions for rechargeable magnesium batteries based on organo-magnesium chloroaluminate complexes [J]. Journal of the Electrochemical Society, 2002, 149(2): A115-A121.
[12] Kakibe T, Yoshimoto N, Egashira M, et al. Optimization of cation structure of imidazolium-based ionic liquids as ionic solvents for rechargeable magnesium batteries [J]. Electrochemistry Communications, 2010, 12(11): 1630-1633.
[13] Pour N, Gofer Y, Major D T, et al. Structural analysis of electrolyte solutions for rechargeable mg batteries by stereoscopic means and dft calculations [J]. Journal of the American Chemical Society, 2011, 133(16): 6270-6278.
[14] Francis S. Amalraj, Aurbach D. The use of in situ techniques in R&D of Li and Mg rechargeable batteries [J]. Journal of Solid State Electrochemistry, 2011, 15(5): 877-890.
[15] Aurbach D, Schechter A, Cohen Y, et al. On the mechanisms of reversible magnesium deposition processes [J] Journal of the Electrochemical Society, 2001, 148(9): A1004-A1014.
文章导航

/