以三氯化钌、氯铂酸为源物质,用溶胶凝胶法制备Ni/Ag2O/RuO2-Pt复合阴极,研究了不同涂覆液AgNO3浓度和热处理温度对该阴极析氢性能的影响,采用SEM-EDS、XRD和XPS观察阴极的表面形貌、表征其组分. 结果表明,Ni/Ag2O/RuO2-Pt复合阴极表面致密、粗糙度大且裂纹少. 电化学测量表明在11 mol?L-1NaOH(90 oC)溶液、0.3 A?cm-2电流密度下,Ni/Ag2O/RuO2-Pt复合阴极的析氢电位比纯Ni电极正移484 mV;交换电流密度是纯Ni电极的10倍. 该阴极制备工艺简单,析氢活性高,有望降低氯碱工业的能耗.
The Ni/Ag2O/RuO2-Pt composite cathode was prepared by sol-gel method using RuCl3 and H2PtCl6 as raw materials. The effects of heat treatment conditions and AgNO3 concentrations on hydrogen evolution properties were investigated. The morphology and composition of Ni/Ag2O/RuO2-Pt composite cathode have been characterized by XRD, XPS and SEM-EDS. It is demonstrated that the surface structure of Ni/Ag2O/RuO2-Pt composite cathode is more compact, with fewer cracks and larger surface roughness than pure nickel. At the conditions of 0.3 A?cm-2, 90 oC, and 11 mol?L-1 NaOH solution, the hydrogen evolution overpotential of Ni/Ag2O/RuO2-Pt composite cathode increases 484 mV with respect to pure nickel cathode, and the exchange current density is about ten times as many as that of pure nickel cathode. This composite electrode with high activity could be applied in the chlor-alkali industry for reducing power consumption.
[1] Han Q(韩庆), Wei X J(魏绪均), Liu K R(刘奎仁). Development of nickel alloys as HER cathodes for water electrolysis[J]. Transactions of Nonferrous Metals Society of China(中国有色金属学报), 2001, 11(1): 158-161.
[2] Li S J(李淑娟), Ju H(鞠鹤), Cai T X(蔡天晓), et al. Research on preparation and application performance of
activated cathodes with nickel-based metal oxides[J]. Chlor-Alkali Industry(氯碱工业), 2010, 461(11): 13-17.
[3] Kotz E R, Stucki S. Ruthenium dioxide as a hydrogen-evolving cathode[J]. Journal of Applied Electrochemistry, 1987, 17(6): 1190-1197.
[4] Rochefort D, Dabo P, Guay D. et al. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions[J]. Electrochimica Acta, 2003, 48(28): 4245-4252.
[5] Sun Z R(孙真荣), Chen K N(陈康宁). Investigation of RuNi oxide active cathode[J]. Journal of East China Normal University (Natural Science) (华东师范大学学报(自然科学版)), 1995, (4): 65-71.
[6] Bianchi I, Guerrini E, Trasatti S. Electrocatalytic activation of Ni for H2 evolution by spontaneous deposition of Ru[J]. Chemical Physics, 2005, 319(1/3): 192-195.
[7] Tavares A C, Trasatti S. Trasatti.Ni+RuO2 co-deposited electrodes for hydrogen evolution[J]. Electrochimica Acta, 2000, 45(25/26): 4195-4202.
[8] Vázquez-Gómeza L, Cattarin S, Guerrierol P. Preparation and electrochemical characterization of Ni + RuO2 composite cathodes of large effective area[J]. Electrochimica Acta, 2007, 52(28): 8055-8063.
[9] Profetia L P R, Profetia D, Olivib P. Pt-RuO2 electrodes prepared by thermal decomposition of polymeric precursors as catalysts for direct methanol fuel cell applications[J]. International Association for Hydrogen Energy, 2009, 34(6): 2747-2757.
[10] Wang Z(王振), Shao Y Q(邵艳群), Wang X(王欣), et al. Effects of heat treatment on microstructure and property of Ru-containing titanium cathode [J]. Heat Treatment Technology and Equipment(热处理技术与装备), 2010, 31(1): 39-42.
[11] Ailton J, Terezo, Ernesto C, et al. Preparation and characterisation of Ti/RuO2 anodes obtained by sol-gel and conventional routes[J]. Materials Letters, 2002, 53(4-5): 339-345.
[12] Antozzi A L, Bargioni C J, Calderara A, et al. Cathode for elecrolytic processes: US Patent, 2008043766-A2[P]. 2008.
[13] Antozzi A L, Bargioni C J, Calderara A, et al. Cathode for elecrolytic processes: US Patent, 20090194411-A1[P]. 2009.
[14] Wang W(王雯), Li X M(黎学明), Yang W J(杨文静), et al. Preparation and characterization of Ni/PdO/RuO2 composite active cathode for chlor-alkali industry[J].Chinese Journal of Inorganic Chemistry(无机化学学报), 2010, 26(9): 1633-1638.
[15] Da Silva L A, Alves V A, Da Silva M A P, et al. Electrochemical impedance, SEM, EDX and voltammetric study of oxygen evolution on Ir+Ti+Pt ternary-oxide electrodes in alkaline solution[J]. Electrochimca Acta, 1996, 41(7/8): 1279-1285.
[16] Comninellis C H, Vercesi G P. Problems in DSA? coating deposition by thermal decomposition[J]. Journal of Applied Electrochemistry, 1991, 21(2): 136-42.
[17] Gao X Y, Wang S Y, Li Jing, et al. Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods[J]. Thin Solid Films, 2004,455-456(1): 438–442.
[18] Gar B, Hoflund-Zoltan F, Hazos. Surface characterization study of Ag, AgO, and Ag2O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy[J]. Physical Review B, 2000, 62(16): 11126-11133.
[19] Rochefort D, Dabo P, Guay D, et al. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions[J]. Electrochimica Acta, 2003, 48(28): 4245-4252.
[20] Park K W, Choi J H, Kwon B K, et al. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation[J]. The Journal of Physical Chemistry B, 2002, 106(8): 1869-1877.