欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

锂离子电池MnO/TiN负极研究

  • 许高洁 ,
  • 杨海燕 ,
  • 韩鹏献 ,
  • 张立学 ,
  • 张克军 ,
  • 张传健 ,
  • 范玉华 ,
  • 毕彩丰 ,
  • 崔光磊
展开
  • 1.中国海洋大学化学化工学院,山东 青岛 266100; 2.中国科学院青岛生物能源与过程研究所,山东 青岛 266101

收稿日期: 2011-10-27

  修回日期: 2011-11-09

  网络出版日期: 2021-12-17

基金资助

科技部重大研究计划(973 项目,No. MOST2011CB935700)、山东省杰出青年基金(No. BS2009NJ013)、国家自然科学基金项目(No. 20971077)资助

Preparation and Characterization of MnO/TiN Anode for Lithium Ion Batteries

  • XU Gao-Jie ,
  • YANG Hai-Yan ,
  • HAN Peng-Xian ,
  • ZHANG Li-Xue ,
  • ZHANG Ke-Jun ,
  • ZHANG Chuan-Jian ,
  • FAN Yu-Hua ,
  • BI Cai-Feng ,
  • CUI Guang-Lei
Expand
  • 1. College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, Shandong, China; 2. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China

Received date: 2011-10-27

  Revised date: 2011-11-09

  Online published: 2021-12-17

摘要

以乙酸锰和钛酸四丁酯为原料,柠檬酸为络合剂,采用溶胶-凝胶法制备钛酸锰(MnTiO3)粉体,而后将其粉体高温氨气氮化,可得到MnO/TiN复合材料. 使用X射线衍射(XRD)、X射线能量色散谱(EDS)和场发射扫描电子显微镜(FESEM)表征材料的物相结构与组分、观察其形貌. 采用循环伏安、恒流充放电和电化学阻抗方法测试电极电化学性能. 结果表明,MnO/TiN电极在100 mA?g-1和1 A?g-1倍率放电下,比容量分别为394 mAh?g-1和146 mAh?g-1,均高于单纯MnO电极比容量和倍率性能,这归因于复合材料中的TiN提供了导电网络,并有效地抑制了电极在充放电过程中的体积膨胀效应.

本文引用格式

许高洁 , 杨海燕 , 韩鹏献 , 张立学 , 张克军 , 张传健 , 范玉华 , 毕彩丰 , 崔光磊 . 锂离子电池MnO/TiN负极研究[J]. 电化学, 2012 , 18(1) : 37 -42 . DOI: 10.61558/2993-074X.2877

Abstract

Manganese titanate (MnTiO3) powder was prepared via a sol-gel method using manganese acetate and tetrabutyl titanate as raw materials, and citric acid as a chelating agent. Through high temperature nitridation of MnTiO3 powder in ammonia, the MnO/TiN composite was obtained. The phase structure, composition and morphology of the composites were characterized by XRD, SEM and EDS. The electrochemical properties of the composite electrodes were studied by performing cyclic voltammetry, galvanostatic charge and discharge, and electrochemical impedance spectroscopy tests. The MnO/TiN electrode delivered specific capacities of 394 mAh?g-1 and 146 mAh?g-1 at the current density of 100 mA?g-1 and 1 A?g-1, respectively, and exhibited higher specific capacity and superior rate capability than MnO electrode, which can be ascribed to the presence of TiN in the composite offering an electron conducting network and suppressing the volume expansion of MnO efficiently during the charge and discharge processes.

参考文献

[1] Poizot P, Laruelle S, Tarascon J M, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499.
[2] Cabana J, Monconduit L, Palacín M R, et al. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Advanced Materials, 2010, 22(35): E170-E192.
[3] Yu X Q, He Y, Li H, et al. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential[J]. Electrochemistry Communications, 2009, 11(4):791-794.
[4] Zhong K F, Xia X, Li H, et al. MnO powder as anode active materials for lithium ion batteries[J]. Journal of Power Sources, 2010, 195(10): 3300-3308.
[5] Zhong K F, Zhang B, Li H, et al. Investigation on porous MnO microsphere anode for lithium ion batteries[J]. Journal of Power Sources, 2011, 196(16): 6802-6808.
[6] Sun B, Chen Z X, Wang G X, et al. MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(6): 3346-3349.
[7] Liu Y M, Zhao X Y, Xia D G, et al. Facile synthesis of MnO/C anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(18): 6448-6452.
[8] Liu J, Pan Q M. MnO/C nanocomposites and high capacity anode materials for Li-ion battery[J]. Electrochemical and Solid-State Letters , 2010, 13(10): A139-A142.
[9] Ding Y L, Wu C Y, Zhao X B, et al. Coaxial MnO/C nanotubes as anodes for lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(16): 5844-5848.
[10] Cui G L, Gu L, Thomas A, et al. A carbon/titanium vanadium nitride composite for lithium storage[J]. ChemPhyChem, 2010, 11(15): 3219-3223.
[11] Dong S M, Chen X, Cui G L, et al. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage[J]. ACS Applied Materials & Interfaces, 2011(1), 3: 93-98.
[12] Zhou X H, Shang C Q, Cui G L, et al. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2011, 3(8): 3058-3063.
[13] Dong S M, Chen X, Cui G L, et al. TiN/VN composites with core/shell structure for supercapacitors[J]. Materials Research Bulletin, 2011, 46(6): 835-839.
[14] Dong S M, Chen X, Cui G L, et al. A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion[J]. Biosensors and Bioelectronics, 2011, 26(10): 4088-4094.
[15] Dong S M, Chen X, Cui G L, et al. One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage[J]. Energy & Environmental Science, 2011, 4(9): 3502-3508.
[16] Qiu Y, Gao L. Novel polyaniline/Titanium nitride nanocomposite: Controllable structures and electrical/Electrochemical properties[J]. The Journal of Physical Chemistry B, 2005, 109(42): 19732-19740.
[17] Snyder M Q, Trbukhova S A, Ravdel B, et al. Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel power as a lithium-ion battery anode[J]. Journal of Power Sources, 2007, 165(1): 379-385.
[18] Lin Y J, Chang Y H, Yang W D, et al. Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepapred by a modified Pechini method[J]. Journal of Non-Crystalline Solids, 2006, 352(8): 789-794.
[19] Han H , Song T, Bae J Y, et al. Nitridated TiO2 hollow nanofibers as anode material for high power lithium ion batteries[J]. Energy & Environmental Science , 2011, 4(11): 4532-4536.
[20] Zhang K J, Wang H B, Cui G L, et al. A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage[J]. Journal of Materials Chemistry, 2011, 21(32): 11916-11922.
[21] Wang L, Wang H B, Cui G L, et al. A facile method of preparing mixed conducting LiFePO4/Graphene composites for lithium-ion batteries[J]. Solid State Ionics, 2010, 181(37-38): 1685-1689.
文章导航

/