欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

绿脓杆菌Pseudomonas aeruginosa BTE-1直接电催化特征

  • 周萍 ,
  • 张恩仁 ,
  • 周立 ,
  • 刁国旺 ,
  • 牛俊乐
展开
  • 扬州大学化学化学化工学院与江苏省环境材料与环境工程重点实验室,扬州 225002

收稿日期: 2011-09-13

  修回日期: 2011-10-04

  网络出版日期: 2011-10-31

基金资助

国家自然科学基金项目(20873120)和江苏省高校自然科学研究重大项目(批准号:10KJA610060)资助

Electrocatalytic Study of Pseudomonas Aeruginosa BTE-1 Strain

  • ZHOU Ping ,
  • ZHANG 恩Ren ,
  • ZHOU Li ,
  • DIAO Guo-Wang ,
  • NIU Jun-Le
Expand
  • Jiangsu provincial Key Laboratory of Environmental Materials and Engineering, and Department of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu,China

Received date: 2011-09-13

  Revised date: 2011-10-04

  Online published: 2011-10-31

摘要

本文研究厌氧条件下产电绿脓杆菌P. aeruginosa BTE-1的电化学催化特征。研究结果表明,P. aeruginosa BTE-1菌株在厌氧条件下,不能分泌可充当电子介体的绿脓菌素,但可通过在电极表面形成生物膜呈现了直接电催化性能。P. aeruginosa BTE-1在电极表面形成生物膜与其在特定电极电位下向电极传递电子的过程直接相关,适宜的电位为+0.2 V (vs. SCE),电位过高可能会损害P. aeruginosa BTE-1细胞。室温范围内升高温度可增强P. aeruginosa BTE-1生物膜电催化活性,但过高的温度(>60℃)会抑制生物膜电催化活性。循环伏安曲线显示,在厌氧条件下形成的P. aeruginosa BTE-1生物膜,具有与典型产电菌株G. sulfurreducens相近的氧化还原电位(-0.4 V~ -0.2 V vs. SCE)。P. aeruginosa BTE-1生物膜可电催化酵母抽取物和葡萄糖,但不能电催化醋酸盐。

本文引用格式

周萍 , 张恩仁 , 周立 , 刁国旺 , 牛俊乐 . 绿脓杆菌Pseudomonas aeruginosa BTE-1直接电催化特征[J]. 电化学, 2012 , 18(1) : 73 -78 . DOI: 10.61558/2993-074X.2883

Abstract

The aim of the present study is to investigate the electrocatalytic activity of electricity-producing Pseudomonas aeruginosa BTE-1 strain under anaerobic conditions. Pseudomonas aeruginosa BTE-1 was inoculated into anaerobic three-electrode electrochemical cells, and the electrocatalytic activity was measured at poised potentials. HPLC and cyclic voltammetry were used to detect potential electron mediators in solutions. Experimental results showed that no detectable pyocyanine was excreted by P. aeruginosa BTE-1 strain in the anaerobic electrochemcial cells, and P. aeruginosa BTE-1 exhibited direct electrocatalytic activity through the formation of biofilm on the electrode surface which was induced by the electron transfer from the cells of P. aeruginosa BTE-1 to the electrode at poised potentials. Suitable potential for biofilm formation was found to be 0.2 V (vs. SCE), and more positive potentials would lead to a potential harm to P. aeruginosa BTE-1 cells. At room temperature, the electrocatalytic activity of the P. aeruginosa BTE-1 biofilm could be enhanced by increasing temperature, however, the temperatures higher than 60 °C reduced the electrocatalytic activity of the biofilms quickly. Cyclic voltammetry analysis indicated that P. aeruginosa BTE-1 biofilms formed under anaerobic conditions exhibited an electrochemical catalytic wave in the potential range of -0.4 V to -0.2 V (vs. SCE), similar to that observed with a typical electricity-generating strain, Geobacter sulfurreducens. Organic substrates, such as compounds in yeast and glucose, could be oxidized through the catalysis of P. aeruginosa BTE-1 biofilms, whereas acetate could not be catalyzed to oxidize.

参考文献

[1] Logan B E, Regan J M. Electricity-producing bacterial communities in microbial fuel cells [J]. Trends Microbiol, 2006, 14(12): 512-518.
[2] Luo Y, Zhang R J, Liu G, et al. Electricity generation from indole and microbial community analysis in the microbial fuel cell [J]. J Hazard Mater, 2010, 176(24): 759-764.
[3] Lovley D E. Bug juice: harvesting electricity with microorganisms [J]. Nat Rev Microbiol, 2006, 4(7): 497-508.
[4] Dumas C, Mollica A, Féron D, et al. Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell [J]. Bioresource Technology, 2008, 99(18): 8887–8894.
[5] Jiang J Q(姜珺秋), Zhao Q L(赵庆良), Wei L L(魏亮亮), et al. Extracellular biological organic matters in microbial fuel cell using sewage sludge as fuel [J]. Water Res, 2010, 44(7): 2163-2170.
[6] Bond D R, Srikanth S, Marsili E, et al. Electrochemical Characterization of Geobacter sulfurreducens Cells Immobilized on Graphite Paper Electrodes [J]. Biotechnol Bioeng, 2008, 99(5): 1065-1073.
[7] Marsili E, Rollefson J B, Baron D B, et al. Microbial Bio?lm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Bio?lms [J]. Appl Environ Microb, 2008, 74(23): 7329-7337.
[8] Cao X X (曹效鑫), Fan M Z (范明志), Liang P(梁鹏), et al. Effects of anode potential on the electricity generation performance of Geobacter Sulfurreducens [J]. Chem J Chinese Universities(高等学校化学学报), 2009, 30(5): 983-987.
[9] Niu Z X(牛钟相), Li Y L (李雅林). The Study Progress of Pseudomonas aeruginosa Diseases [J]. Progress in Veterinary Medicine(动物医学进展), 2003, 24 (1): 16-18.
[10] Iversen B G, Brants?ter A B, Aavitsland P. Nationwide study of invasive Pseudomonas aeruginosa infection in Norway: Importance of underlying disease [J]. J Infection, 2008, 57(2): 139-146.
[11] Coenye T, Nelis H J. In vitro and in vivo model systems to study microbial bio?lm formation [J]. Microbiol METH, 2010, 83(2): 89-105.
[12] Rabaey K, Boon N, Hofte M, et al. Microbial Phenazine Production Enhances Electron Transfer in Biofuel Cells [J]. Environ Sci Technol, 2005, 39(9): 3401-3408.
[13] Venkataraman A, Rosenbaum M, Halitschke R, et al. Quorum sensing regulates electric current generation of
Pseudomonas aeruginosa PA14 in bioelectrochemical systems [J]. Electrochem Commun, 2010, 12: 459-462.
[14] Shuang C D(双陈冬), Zhang E R(张恩仁), Diao G W(刁国旺), et al. Electricity generation in microbial fuel
cells catalyze by mixed culture and pure culture[J]. Electrochemictry(电化学), 2008, 14(3): 313-318.
[15] Zhan Y L(詹亚力), Wang Q (王琴), Zhang P P(张佩佩), et al. Investigation on influence factors and mechanism of microbial fuel cell [J]. Chem J Chinese Universities(高等学校化学学报), 2008 , 29(1): 144-14.
[16] Lloyd J R, Leang C, Lovley D R, et al. Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens [J]. Biochem J, 2003, 369(1): 153-161.
[17] Pessanha M, Londer Y Y, Long W C, et al. Redox characterization of Geobacter sulfurreducens cytochrome c(7): Physiological relevance of the conserved residue F15 probed by site-speci?c mutagenesis [J]. Biochem, 2004, 43(30): 9909- 9917.
[18] Magnuson T S, Isoyama N, Lovley D R, et al. Isolation, characterization, and genesequence analysis of a membrane associated 89 kDa Fe(III) reducing cyotchrome from Geobacter sulfurreducens [J]. Biochem J, 2001, 359: 147-152.
文章导航

/