欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

吡虫啉电化学性能研究

  • 王杰琼 ,
  • 张旺 ,
  • 陈铭 ,
  • 刁国旺
展开
  • 扬州大学化学化工学院,江苏 扬州 225002

收稿日期: 2011-09-04

  修回日期: 2011-09-15

  网络出版日期: 2011-10-21

基金资助

国家自然科学基金(20973151,20901065)资助

Electrochemical Behavior of Imidacloprid

  • WANG Jie-Qiong ,
  • ZHANG Wang ,
  • CHEN Ming ,
  • DIAO Guo-Wang
Expand
  • College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002,Jianhsu, China

Received date: 2011-09-04

  Revised date: 2011-09-15

  Online published: 2011-10-21

摘要

应用循环伏安法研究了吡虫啉(IDP)在玻碳电极的电化学行为. 结果表明:IDP的还原反应是不可逆的,且受扩散控制,电子转移数4,扩散系数DR 2.44×10-6cm2?s-1,反应活化能Ed 9.33 kJ?mol-1.

本文引用格式

王杰琼 , 张旺 , 陈铭 , 刁国旺 . 吡虫啉电化学性能研究[J]. 电化学, 2012 , 18(1) : 68 -72 . DOI: 10.61558/2993-074X.2882

Abstract

The electrochemical behavior of imidacloprid(IDP)on glassy carbon electrode has been investigated by cyclic voltammetry. The result shows that the electrochemical reduction of IDP is irreversible and controlled by diffusion. At 25 ℃, the numbers of the electrons transferred of IDP in the electrochemical reaction are four. The diffusion coefficient of IDP is 2.44×10?6 cm2?s?1 and the diffusion activation energy is calculated to be 9.33 kJ?mol-1.

参考文献

[1] Giannakopoulos E, Stivaktakis P, Deligiannakis Y. Thermodynamics of adsorption of imidacloprid at constant charge hydrophobic surfaces: physicochemical aspects of bioenvironmental activity [J]. Langmuir, 2008, 24 (8): 3955-3959.
[2] Fernandez-Perez M, Gonzalez-Pradas E, Urena-Amate M D. Controlled release of imidacloprid from a lignin matrix: water release kinetics and soil mobility study [J]. Journal of Agricultural and Food Chemistry, 1998, 46 (9): 3828-3834.
[3] Bai D L, Lummis S C R, Leicht W, et al. Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor neurone [J]. Pesticide Science, 1991, 33 (2): 197-204.
[4] Singh J, Singh D K. Available nitrogen and arginine deaminase activity in groundnut (Arachis hypogaea L.) fields after imidacloprid, diazinon, and lindane treatments [J]. Journal of Agricultural and Food Chemistry, 2005, 53 (2): 363-368.
[5] Cox L, Koskinen W C, Yen Y Y. et al. Sorption-desorption of imidacloprid and its metabolites in soils [J]. Journal of Agricultural and Food Chemistry, 1997, 45 (4): 1468-1472.
[6] Wamhoff H, Schneider V. Photodegradation of Imidacloprid [J]. Journal of Agricultural and Food Chemistry, 1999, 47 (4): 1730-1734.
[7] Kong M Z, Shi X H, Cao Y C, et al. Solubility of Imidacloprid in Different Solvents [J]. Journal of Chemical and Engineering Data, 2008, 53 (3): 615-618.
[8] Philippidis N , Sotiropoulos S, Efstathiou A, et al. Photoelectrocatalytic degradation of the insecticide imidacloprid using TiO2/Ti electrodes [J]. Journal of Photochemistry and Photobiology A-Chemistry, 2009, 204 (2/3): 129-136.
[9] Erenchun N R, deBalugera Z G, Goicolea M A, et al. Determination of imidacloprid and its major metabolite in soils by liquid chromatography with pulsed reductive amperometric detection [J]. Analytica Chimica Acta, 1997, 349 (1/3): 199-206.
[10] Guiberteau A, Galeano T, Mora N, et al. Study and determination of the pesticide Imidacloprid by square wave adsorptive stripping voltammetry [J]. Talanta, 2001, 53 (5): 943-949.
[11] deErenchun N R, Goicolea M A, deBalugera, Z G, et al. Determination of herbicides by reductive amperometric detection in liquid chromatography [J]. Journal of Chromatography A, 1997, 763 (1/2): 227-235.
[12] Luz R D S, Damos F S, de Oliveira A B, et al. Voltammetric determination of 4-nitrophenol at a lithium tetracyanoethylenide (LiTCNE) modified glassy carbon electrode [J]. Talanta, 2004, 64 (4): 935-942.
文章导航

/