欢迎访问《电化学(中英文)》期刊官方网站,今天是
化学-生物传感技术近期研究专辑(上海师范大学 章宗穰教授主编)

基于聚酚藏花红功能碳纳米管生物阳极的制备及其在乙醇传感中的应用研究(英文)

展开
  • 1. 东京工业大学电子化学系, 日本, 东京226-8502; 2. 北京分子科学国家实验室, 中国科学院活体分析化学重点实验室, 北京 100190

收稿日期: 2011-06-07

  修回日期: 2011-07-11

  网络出版日期: 2011-07-20

基金资助

The present work was financially supported by Grant-in-Aid for Scientific Research (A) (No. 19206079) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, Tokyo Institute of Technology Global COE Program for Energy Science, and Japan-China Research Program on Enzyme-based Biofuel Cells organized and sponsored by Japan Science and Technology (JST) and Natural Science Foundation of China (NSFC).

Development of dehydrogenase-based bioanode using poly(phenosafranin)-functionalized SWCNT nanocomposites and its application to ethanol biosensor

Expand
  • 1. Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan; 2. Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, the Chinese Academy of Sciences(CAS), Beijing 100190, China

Received date: 2011-06-07

  Revised date: 2011-07-11

  Online published: 2011-07-20

Supported by

The present work was financially supported by Grant-in-Aid for Scientific Research (A) (No. 19206079) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, Tokyo Institute of Technology Global COE Program for Energy Science, and Japan-China Research Program on Enzyme-based Biofuel Cells organized and sponsored by Japan Science and Technology (JST) and Natural Science Foundation of China (NSFC).

摘要

本文利用电化学聚合酚藏花红(PPS)功能化单壁碳纳米管作为烟酰胺辅酶(NADH)氧化的电化学催化剂,研制了基于乙醇脱氢酶的安培型乙醇生物电化学传感器。PPS通过在酚藏花红的溶液电化学聚合得到,在0.0 V时对NADH具有很好的催化性能。单体酚藏花红则由于电化学电位太低(-0.48 V)而对NADH没有催化性能。所制备的传感器的性能通过循环伏安和计时安培法来表征。实验结果表明:碳纳米管的载量,固定化酶的量,NAD+的浓度以及溶液的pH都直接影响传感器的性能。在优化的条件下,所制备的乙醇传感器在0.2 V的电位下,对乙醇响应的灵敏度为2.0 μA cm-2 mM–1,检测限为36 μM。所制备的传感器具有很好的稳定性,连续测定45 min后响应电流下降值只是起始响应值的7%。本文的研究为电化学生物传感器的研究提供了新的思路

本文引用格式

Farhana S. Saleh, Takeyoshi Okajima, Lanqun Mao, Takeo Ohsaka . 基于聚酚藏花红功能碳纳米管生物阳极的制备及其在乙醇传感中的应用研究(英文)[J]. 电化学, 2011 , 17(3) : 263 -270 . DOI: 10.61558/2993-074X.2093

Abstract

A New type of dehydrogenase-based amperometric ethanol biosensor was constructed using alcohol dehydrogenase (ADH) which was immobilized on the edge-plane pyrolytic graphite (EPPG) electrode modified with poly(phenosafranin)-functionalized single-walled carbon nanotube (PPS-SWCNT). The PPS-SWCNT modified EPPG electrode was prepared by electropolymerization of phenosafranin on the EPPG electrode which was previously coated with SWCNT. The performance of the ADH/PPS-SWCNT/EPPG electrode was evaluated using cyclic voltammetry and amperometry in the presence of ethanol. The fabricated ethanol biosensor provided a reasonable sensitivity of 2.0 μA cm–2 mM–1 and a low detection limit (36 μM) for the electrocatalytic oxidation of ethanol with a linear concentration dependence upto ~ 1.0 mM at a detection potential of 0.2 V.

参考文献

[1] Asav E, Akyilmaz E. Preparation and optimization of a bienzymic biosensor based on self-assembled monolayer modified gold electrode for alcohol and glucose detection[J]. Biosens Bioelectron, 2010, 25(5):1014-1018.
[2] Niculescu M, Erichsen T, Sukharev V, et al. Quinohemoprotein alcohol dehydrogenase-based reagentless amperometric biosensor for ethanol monitoring during wine fermentation[J]. Anal Chim Acta, 2002, 463(1): 39-51.
[3] Mitsubayashi K, Matsunaga H, Nishio G, et al. Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking[J]. Biosens Bioelectron, 2005, 20(8): 1573-1579.
[4] Hamdi N, Wang J J, Walker E, et al. An electroenzymatic L-glutamate microbiosensor selective against dopamine[J]. J Electroanal Chem, 2006, 591(1): 33-40.
[5] Wang J. Carbon-nanotube based electrochemical biosensors: A review[J]. Electroanalysis, 2005, 17(1): 7-14.
[6] Manso J, Mena M L, Yanez-Sedeno P, et al. Alcohol dehydrogenase amperometric biosensor based on a colloidal gold-carbon nanotubes composite electrode[J]. Electrochim Acta, 2008, 53(11): 4007-4012.
[7] Gouveia-Caridade C, Pauliukaite R, Brett C M A. Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol[J]. Electrochim Acta, 2008, 53(23): 6732-6739.
[8] Pedano M L, Rivas G A. Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes[J]. Electrochem Commun, 2004, 6(1): 10-16.
[9] Hong C Y, You Y Z, Pan C Y. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization[J]. Chem Mater, 2005, 17(9): 2247-2254.
[10] Dyke C A, Tour J M. Covalent functionalization of single-walled carbon nanotubes for materials applications[J]. J Phys Chem A, 2004, 108(51):11151-11159.
[11] Joshi K A, Prouza M, Kum M, et al. V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode[J]. Anal Chem, 2006, 78(1): 331-336.
[12] Baskaran D, Mays J W, Bratcher M S. Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes[J]. Chem Mater, 2005, 17(13): 3389-3397.
[13] Wei D, Kvarnstr?m C, Lindfors T, et al. Electrochemical functionalization of single walled carbon nanotubes with polyaniline in ionic liquids[J]. Electrochem Commun, 2007, 9(2): 206-210.
[14] Wei C Y, Srivastava D, Cho K J. Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites[J]. Nano Lett, 2002, 2(6): 647-650.
[15] An K H, Jeong S Y, Hwang H R, et al. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites[J]. Adv Mater, 2004, 16(12): 1005-1009.
[16] Woo H S, Czerw R, Webster S, et al. Organic light emitting diodes fabricated with single wall carbon nanotubes dispersed in a hole conducting buffer: the role of carbon nanotubes in a hole conducting polymer[J]. Synth Met, 2001, 116(1/3): 369-372.
[17] Bhattacharyya S, Kymakis E, Amaratunga G A J. Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices[J]. Chem Mater, 2004, 16(23): 4819-4823.
[18] Wang C Y, Mottaghitalab V, Too C O, et al. Polyaniline and polyaniline-carbon nanotube composite fibres as battery materials in ionic liquid electrolyte[J]. J Power Sources, 2007, 163(2): 1105-1109.
[19] Huang J E, Li X H, Xu J C, et al. Well-dispersed single-walled carbon nanotube/polyaniline composite films[J]. Carbon, 2003, 41(14): 2731-2736.
[20] Lota K, Khomenko V, Frackowiak E. Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites[J]. J Phys Chem Solid, 2004, 65(2/3): 295-301.
[21] Wang H S, Li T H, Jia W L, et al. ly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode[J]. Biosens Bioelectron, 2006, 22(5): 664-669.
[22] Ferrer-Anglada N, Kaempgen M, Skákalová V, et al. Synthesis and characterization of carbon nanotube-conducting polymer thin films[J]. Diamond Relat Mater, 2004, 13(2): 256-260.
[23] Wang Z J, Yuan J H, Li M Y, et al. Electropolymerization and catalysis of well-dispersed polyaniline/carbon nanotube/gold composite[J]. J Electroanal Chem, 2007, 599(1): 121-126.
[24] Yan Y, Zheng W, Su L, et al. Carbon-nanotube-based glucose/O2 biofuel cells[J]. Adv Mater, 2006, 18(19): 2639-2643.
[25] Persson B, Gorton L. A comparative study of some 3,7-diaminophenoxazine derivatives and related compounds for electrocatalytic oxidation of NADH[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 292(1/2): 115-138.
[26] Ohsaka T, Tanaka K, Tokuda K. Electrocatalysis of poly(thionine)-modified electrodes for oxidation of reduced nicotinamide adenine dinucleotide[J]. J Chem Soc, Chem Commun, 1993, (3): 222-224.
[27] Saleh F S, Rahman M R, Okajima T,et al. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes[J]. Bioelectrochem, 2011, 80(2): 121-127.
[28] Saleh F S, Okajima T, Kitamura F, et al. Poly(phenosafranin)-functionalized single-walled carbon nanotube as nanocomposite electrocatalysts: Fabrication and electrocatalysis for NADH oxidation[J]. Electrochim Acta, 2011, 56(13): 4916-4923.
[29] Komura T, Niu GY, Yamaguchi T, et al. Coupled electron-proton transport in electropolymerized methylene blue and the influences of its protonation level on the rate of electron exchange with β-nicotinamide adenine dinucleotide[J]. Electroanal, 2004, 16(21): 1791-1800.
[30] Wu L N, Zhang X J, Ju H X. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential[J]. Anal Chem, 2007, 79(2): 453-458.
[31] Xiao Y, Shlyahovsky B, Povo I, et al. Shape and color of au nanoparticles follow biocatalytic processes[J]. Langmuir, 2005, 21(13): 5659-5662.
[32] Svensson K, bulow L, Kriz D, et al. Investigation and evaluation of a method for determination of ethanol with the SIRE Biosensor P100, using alcohol dehydrogenase as recognition element[J]. Biosens Bioelectron, 2005, 21(): 705-711.
[33] Liu S N, Cai C X. Immobilization and characterization of alcohol dehydrogenase on single-walled carbon nanotubes and its application in sensing ethanol[J]. J Electroanal Chem, 2007, 602(1): 103-114.
文章导航

/