欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

石墨烯对Ni(OH)2超级电容器材料的电化学行为的影响

  • 赵真真 ,
  • 倪文彬 ,
  • 高能越 ,
  • 王洪波 ,
  • 赵健伟
展开
  • 南京大学 化学化工学院,生命分析国家重点实验室,江苏 南京 210093

收稿日期: 2011-04-18

  修回日期: 2011-05-24

  网络出版日期: 2011-06-09

基金资助

国家自然科学基金(20821063和20873063);973项目基金(2010CB732400)

Effects of Graphene on Electrochemical Behaviors of Ni(OH)2 as Supercapacitor Material

  • ZHAO Zhen-Zhen ,
  • NI Wen-Bin ,
  • GAO Neng-Yue ,
  • WANG Hong-Bo ,
  • ZHAO Jian-Wei
Expand
  • Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, China

Received date: 2011-04-18

  Revised date: 2011-05-24

  Online published: 2011-06-09

摘要

研究了氧化缺陷石墨烯对Ni(OH)2电化学性能的增强作用。实验上,由恒电位沉积法在石墨烯基底上制备Ni(OH)2纳米粒子/石墨烯复合材料。TEM观察和电化学测试表明,Ni(OH)2纳米粒子均匀地分散在石墨烯基底上,其粒径为5.0±0.5 nm,体系的质量比电容值为1928 F•g-1。量化计算结果表明,上述复合材料乃是通过Ni(OH)2与石墨烯表面功能基团的强化学作用相结合而导电,电子则自石墨烯基底经氧化缺陷向Ni(OH)2分子传递,导致Ni(OH)2带负电,从而形成Ni(OH)2纳米粒子的单向导电行为。

本文引用格式

赵真真 , 倪文彬 , 高能越 , 王洪波 , 赵健伟 . 石墨烯对Ni(OH)2超级电容器材料的电化学行为的影响[J]. 电化学, 2011 , 17(3) : 292 -299 . DOI: 10.61558/2993-074X.2843

Abstract

The enhanced electrochemical properties of Ni(OH)2 by the oxidation defected graphene were studied by both experimental method and theoretical calculation. The composite material of nano-Ni(OH)2/graphene was prepared by potentiostatic deposition on the graphene substrate. Observed by TEM, the Ni(OH)2 nanoparticles were well dispersed on the graphene substrate with the diameter of 5.0±0.5 nm. The capacitance of the system measured by the electrochemical test was 1928 F?g-1. As indicated by the theoretical calculations, the composite material becomes conductive since Ni(OH)2 is combined with surface functional groups of the graphene through the strong chemical interaction. The electrons transfer from the graphene substrate to the Ni(OH)2 through the oxidation defects, which makes the Ni(OH)2 nanoparticles negatively charged and results in the unilateral conduction phenomenon.

参考文献

[1] Yang D N, Wang R M, He M S, et al. Ribbon and boardlike nanostructures of nickel hydroxide: Synthesis, characterization, and electrochemical properties[J]. J Phys Chem B, 2005, 109(16): 7654-7658.

[2] Cao M H, He X Y, Chen J, et al. Self-Assembled Nickel Hydroxide Three-Dimensional Nanostructures: A Nanomaterial for Alkaline Rechargeable Batteries[J]. Cryst Growth Des, 2007, 7(1): 170-174.

[3] Xu L P, Ding Y S, Chen C H, et al. 3D Flowerlike α-Nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-Assisted Hydrothermal Method[J]. Chem Mater, 2008, 20(1): 308-316.

[4] Wang D B, Song C X, Hu Z S, et al. Fabrication of Hollow Spheres and Thin Films of Nickel Hydroxide and Nickel Oxide with Hierarchical Structures[J]. J Phys Chem B, 2005, 109(6): 1125-1129.

[5] Zhao D D, Bao S J, Zhou W J, et al. Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor[J]. Electrochem Commun, 2007, 9(5): 869-874.

[6] Zhao D D, Xu M W, Zhou W J, et al. Preparation of ordered mesoporous nickel oxide film electrodes via lyotropic liquid crystal templated electrodeposition route[J]. Electrochim Acta, 2008, 53(6): 2699-2705.

[7] Zhao D D, Zhou W J, Li H L. Effects of Deposition Potential and Anneal Temperature on the Hexagonal Nanoporous Nickel Hydroxide Films[J]. Chem Mater, 2007,19(16): 3882-3891.

[8] Vidotti M, Greco C V, Ponzio E A, et al, Sonochemically synthesized Ni(OH)2 and Co(OH)2 nanoparticles and their application in electrochromic electrodes[J]. Electrochem Commun, 2006, 8(4): 554-560.

[9] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[10] Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material[J]. Nat Nanotechnol, 2008, 3: 270-274.

[11] Lotya M, Hernandez Y, King P J, et al. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions[J]. J Am Chem Soc, 2009, 131(10): 3611-3620.

[12] Niyogi S, Bekyarova E, Itkis M E, et al. Solution Properties of Graphite and Graphene[J]. J Am Chem Soc, 2006, 128(24): 7720-7721.

[13] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon 2007, 45(7): 1558-1565.

[14] Obraztsov A N. Chemical vapour deposition: Making graphene on a large scale[J]. Nat Nanotechnol, 2009, 4: 212-213.

[15] Paek S M, Yoo E J, Honma I. Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure[J].

Nano Lett, 2009,9(1): 72-75.

[16] Yoo E J, Okata T, Akita T, et al. Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface[J].Nano Lett, 2009, 9(6): 2255-2259.

[17] Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. J Am Chem Soc, 1958, 80(6): 1339-1339.

[18] Frisch M J, Trucks G. W, Schlege H B,et al. GAUSSIAN 03, Revision C.02[M]. Gaussian Inc: Wallingford CT, 2004.

[19] Corrigan D A, Bendert R M. Effect of Coprecipitated Metal-Ions on the Electrochemistry of Nickel-Hydroxide Thin-Films - Cyclic Voltammetry in 1m Koh[J]. J. Electrochem Soc, 1989, 136(3): 723-728.

[20] Zhao D D, Zhou W J, Li H L. Effects of deposition potential and anneal temperature on the hexagonal nanoporous nickel hydroxide films[J]. Chem Mater, 2007, 19(16): 3882-3891.
文章导航

/