欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

核电站结构材料的锌离子注入电化学研究

  • 张胜寒 ,
  • 檀玉 ,
  • 梁可心
展开
  • 华北电力大学,环境科学与工程学院,河北 保定 071000

收稿日期: 2010-09-28

  修回日期: 2010-12-30

  网络出版日期: 2011-05-05

基金资助

国家自然科学基金(50971059), 中央高校基本科研业务费专项资金(10QX42)

Electrochemical Studies of Zinc Injection into the Structure Materials of Nuclear Power Plants

  • ZHANG Sheng-Han ,
  • TAN Yu ,
  • LIANG Ke-Xin
Expand
  • School of Environmental Science and Engineering, North China Electric Power University, Baoding 071000, China

Received date: 2010-09-28

  Revised date: 2010-12-30

  Online published: 2011-05-05

摘要

应用电化学方法研究了锌离子注入(zinc injection)技术对核电站结构材料,如304L不锈钢、316L不锈钢和600合金在高温水中形成的氧化膜的电化学性能的影响. 锌离子注入压水堆(PWR)一回路技术可有效减少材料应力腐蚀破裂(stress corrosion cracking)和职业辐照. 用动电位扫描法检测材料氧化膜的自腐蚀电位与腐蚀电流,根据Mott-Schottky曲线分析Zn离子注入对材料氧化膜半导体性质的改变. SEM和XPS观察与检测试样表面形貌及其组分. 在Zn离子参与的金属氧化膜生成过程中,可生成Zn-Ni-Cr-Fe 氧化物,从而提高了材料的抗腐蚀能力及改变氧化膜的半导体性质.

本文引用格式

张胜寒 , 檀玉 , 梁可心 . 核电站结构材料的锌离子注入电化学研究[J]. 电化学, 2011 , 17(2) : 212 -216 . DOI: 10.61558/2993-074X.2833

Abstract

The electrochemical and semiconductor characters of oxide films formed on 304L, 316L stainless steel and alloy 600 in high temperature water with zinc addition were studied. Stress corrosion cracking and occupational radiation can be retarded effectively by zinc injection to the primary circuit of pressurized water reactor (PWR). The semiconductor characters of the materials formed by zinc injection was analyzed by Mott-Schottky curves. The surface morphology and components of the corrosion oxide layer were examined and detected by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The result reveals that the smaller crystals and the complex Zn-Cr-Ni-Fe oxide were formed by zinc addition into the high temperature water. Zinc injection is a useful method to enhance the anti-corrosion ability of materials and change the semiconductor character of oxide films formed in Fe/Ni base alloys.

参考文献

[1] Hideyuki Hosokawa, Makoto Nagase. Investigation of cobalt deposition behavior with zinc injection on stainless steel under BWR conditions[J]. Nuclear Science and Technology, 2004, 41(6):682-689.

[2] EPRI TR-104606, Dec. 1994.

[3] T. L. Sudensh, L. Wijesinghe, Daniel John Blackwood. Photocurent and capacitance investigations into the nature of the passive films on austenitic stainless steel[J]. Corrosion Science, 2008, 50(1):23-34.

[4] Jan Macák, Petr Sajdl, Pavel Ku?era, et al. In situ electro-chemical impedance and noise measurements of corroding stainless steel in high temperature water[J]. Electrochimica Acta 2006, 51: (17) 3566-3577.

[5] M. F. Montemor, M. G. S. Ferreira, N. E. Hakiki, et al. Chemical composition and electronics structure of the oxide films formed on 316L stainless steel and nickel based alloys in high temperature aqueous environments[J]. Corrosion Science, 2000, 42(9):1635-1650.

[6] S. E. Ziemniak, M. Hanson. Zinc treatment effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corrosion Science, 2006, 48(9):2525-2546.

[7] S. E. Ziemniak, M. Hanson. Zinc treatment effects on corrosion behavior of alloy 600 in high temperature, hydrogenated water [J]. Corrosion Science, 2006, 48(10):3330-3348.

[8] M. Haginuma, S. Ono, M. Sambongi, et al. Effect of metal ion addition on cobalt accumulation reduction and its thermodynamic evaluation, 1998 JAIF Int. Conf. on Water Chemistry in Nuclear Power Plants, Kashiwazaki, Japan:122.

[9] C. M. Rangel, T. M. Silva, M. da Cunha Belo. Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels[J]. Electrochimica Acta, 2005,50(25-26):5076-5082.

[10] Y. F. Cheng, J. L. Luo. Electronic structure and pitting susceptibility of passive film on carbon steel[J]. Electrochimica Acta, 1999,44(17):2947-2957.

[11] P. Schmuki, H. Böhni. Metastable pitting and semiconductive properties of passive films[J]. Electrochemical Society, 139(7):1908-1913.

[12] L. Hamadou, A. Kadri, N. Benbrahim, et al. Characterization of thin anodically grown oxide films on AISI 304L stainless steel[J]. Electrochemical Society, 2007, 154(12):291-297.

[13] Dawn E. Janney, Douglas L. Porter. Characterization of phases in ‘crud’ from boiling-water reactors by transmission electron microscopy[J]. Nuclear Materials, 2007, 362(1):104-115.

[14] Y. J. Kim. Transformation kinetics of oxide formed on noble metal treated 304SS in 288 water, Corrosion 2001(2001), Paper No. 01136.

[15] S. E. Ziemniak, M. Hanson. Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corrosion Science, 2002, 44(10): 2209-2230.

[16] S. E. Ziemniak, M. Hanson. Corrosion behavior of NiCrFe alloy 600 in high temperature, hydrogenated water[J]. Corrosion Science, 2006, 48(2):498-521.

[17] A. Di Paola. Semiconducting properties of passive films on stainless steels[J]. Electrochimica Acta 1989, 34(2):203-210.

[18] W. Li, J. Luo. Electric properties and pitting susceptibility of passive films formed on iron in chromate solution[J]. Electrochemistry Communication, 1999, 1(8):349-353.

[19] Paola A. P., Shukla D., Stimming U.  Photoelectrochemical study of passive films on stainless steel in neutral solutions[J]. Electrochimica. Acta, 1991,36(2):345-352.

[20] Sunseri C., Piazza S., Di Quarto, F. Photocurrent spectroscopic investigations of passive films on chromium[J]. Electrochemical Society, 1990,137(8):2411-2417.

[21] Macdonald, D. D. The point defect model for the passive state [J]. Electrochemical Society, 1992, 139(12):3434-3449.
文章导航

/