欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

介孔碳基钴镍氧化物的电化学电容性能

  • 杨贞胜 ,
  • 孔令斌 ,
  • 邓莉 ,
  • 罗永春 ,
  • 康龙
展开
  • 1. 兰州理工大学甘肃省有色金属新材料省部共建国家重点实验室,甘肃 兰州730050;
    2. 兰州理工大学材料科学与工程学院,甘肃 兰州 730050

收稿日期: 2011-01-07

  修回日期: 2011-03-15

  网络出版日期: 2011-05-05

基金资助

国家自然科学基金(50602020), 973计划前期研究专项(2007CB216408)和甘肃省高校基本科研业务费专项资金

Electrochemical Capacitive Performance of Mesoporous Carbon Based Co-Ni Oxides

  • YANG Zhen-Sheng ,
  • KONG Ling-Bin ,
  • DENG Li ,
  • LUO Yong-Chun ,
  • KANG Long
Expand
  • 1. State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China;
    2. School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Received date: 2011-01-07

  Revised date: 2011-03-15

  Online published: 2011-05-05

摘要

以介孔碳CMK-3为载体,利用CMK-3表面缺陷作形核中心,应用前驱体化学液相共沉淀法制备新型的Co0.25Ni0.75氧化物/CMK-3复合材料.X射线衍射(XRD)分析及扫描电子显微镜(SEM)形貌观察表明该材料主要呈现弱结晶态结构, 其中Co-Ni氧化物纳米片交错成空间网络并包覆在介孔碳表面.BET测试表明该材料孔径分布在3~4 nm之间,且高分散、疏松多孔,具有良好的OH-离子传递特性.循环伏安和恒流充放电测试表明,该材料有高的电化学活性, 在5 mA/cm2电流密度下,Co0.25Ni0.75氧化物(92%)/C比电容达1781F/g.

本文引用格式

杨贞胜 , 孔令斌 , 邓莉 , 罗永春 , 康龙 . 介孔碳基钴镍氧化物的电化学电容性能[J]. 电化学, 2011 , 17(2) : 217 -221 . DOI: 10.61558/2993-074X.2834

Abstract

By using defects on the surface of CMK-3 served as nucleation center, Co0.25Ni0.75 oxide/C composite was successfully prepared through a simple chemical co-precipitation method. Characterization was carried by using X-ray diffraction, BET and scanning electron microscopy. Results showed that a perfect mesoporous network of interconnected nanoflakes was obtained for Co0.25Ni0.75 oxide/C composite and, this material has a less crystallization, interconnected nanoflakes network structure and a narrow mesoporous distribution at about 3~4 nm. The highly dispersed and loosely packed Co0.25Ni0.75 oxide/C composite possessed good electrochemical accessibility and fast diffusion rate of OH-. Cyclic voltammetry, charge–discharge curves suggested that the as-prepared Co0.25Ni0.75 oxide(92%) /C electrode is highly electrochemical activated and an admirable specific capacitance of as high as 1781 F/g could be obtained at current density of 5mA/cm2.

参考文献

[1] An K H, Kim W S, Park Y S, et al. Supercapacitors using single-walled carbon nanotube electrodes [J]. Adv Mater, 2001, 13: 497-500.

[2] Kim C. Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors [J]. J. Power Sources, 2005, 142: 382-388.

[3] Kong L B, Lang J W, Liu M, et al. Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors [J]. J Power Sources, 2009, 194:  1194-1201.

[4] Liang Y Y, Cao L, Kong L B, et a1. Synthesis of Co(OH)2/USY composite and its application for electrochemical supercapacitors [J]. J Power Sources, 2004, 136: 197-200.

[5] Fan L Z, Hu Y S, Maier J, et a1.High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support [J]. Adv Funct Mater, 2005, 17: 3083-3087.

[6] Ghosh S, Inganas O. Conducting polymer hydrogels as 3D electrodes:applications for suparcapacitors[J]. Adv Mater, 1999, 11: 1214-1218.

[7] Wang Y G, Li H Q, Xia Y Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance [J]. Adv Mater, 2006, 18: 2619-2623.

[8] Wang D W, Li F, Liu M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage [J]. Angew Chemie Int Edit, 2008, 120: 379-382.

[9] Long J W, Dunn B, Rolison D R, et al. Three-dimensional battery architectures [J]. Chem Rev, 2004, 104: 4463-4492.

[10] Shan Y, Gao L. Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors [J]. Mater Chem Phys, 2007, 103: 206-210.

[11] Lee J Y, Liang K, An K H, et al. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance [J]. Synth Met, 2005, 150: 153-157.

[12] Nam K W, Kim K H, Lee E S, et al. Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates [J]. J Power Sources, 2008, 182: 642-652.

[13] Zheng Z, Huang L, Zhou Y, et al. Large-scale synthesis of mesoporous CoO-doped NiO hexagonal nanoplatelets with improved electrochemical performance [J]. Solid State Sciences, 2009, 11: 1439-1443.

[14] Zhao D Y, Feng J L, Huo Q H, et al. Triblock copolymer syntheses of mesoporous silica with Periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548-552.

[15] Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J Am Chem Soc, 2000, 122: 10712-10713.

[16] Lang J W, Kong L B, Liu M, et al. A facile approach to the preparation of loose-packed

Ni(OH)2 nanoflake materials for electrochemical capacitors [J]. J Solid State Electrochem, 2009, 13: 333-340.

[17] Li Q Y, Wang R N, Nie Z R, et al. Preparation and characterization of nanostructured Ni(OH)2 and NiO thin films by a simple solution growth process [J]. J Colloid and Interface Science, 2008, 320: 254-258.
文章导航

/