欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

4-叔丁基吡啶对纳米晶TiO2电极的能带结构及光电化学性质的影响

  • 杨术明 ,
  • 王纪超 ,
  • 寇慧芝 ,
  • 薛洪滨 ,
  • 王红军 ,
  • 郭玉玲
展开
  • 信阳师范学院化学化工学院,应用化学研究所,河南 信阳464000

收稿日期: 2010-11-18

  修回日期: 2011-01-06

  网络出版日期: 2011-05-06

基金资助

国家自然科学基金(20773103)、人事部留学人员科技活动择优项目(2006164)、教育部留学回国人员科研启动基金(2008101)和河南省教育厅科技计划项目(2008A150022)

Influence of tert-butylpyridine on the band energetics of nanostructured TiO2 electrodes and the photoelectrochemical properties of dye-seneitized electrodes

  • YANG Shu-Ming ,
  • WANG Ji-Chao ,
  • KOU Hui-Zhi ,
  • XUE Hong-Bin ,
  • WANG Hong-Jun ,
  • GUO Yu-Ling
Expand
  • College of Chemistry and Chemical Engineering, Institute of Applied Chemistry, Xinyang Normal University, Henan, China, 464000

Received date: 2010-11-18

  Revised date: 2011-01-06

  Online published: 2011-05-06

摘要

应用光谱电化学方法测定了纳米晶TiO2电极在不同浓度的4-叔丁基吡啶(TBP)电解液中的平带电势(Efb). TBP对纳米晶TiO2电极的能带结构具有显著的影响. 在不含和含有0.2或0.4 mol•L-1TBP的0.2 mol•L-1高氯酸四丁基铵(TBAP)/乙腈溶液中,测得TiO2电极的Efb依次为-2.25,-2.46和-2.60 V. 当加入Li+后,TiO2电极的Efb正移,在不含和含有0.2或0.4 mol•L-1TBP的0.2 mol•L-1 LiClO4/乙腈溶液中,测得TiO2电极的Efb依次为-1.12,-1.22和-1.30 V. 用时间分辨电流方法测定了陷阱态分布. 在不含和含有0.2或0.4 mol•L-1TBP的0.2 mol•L-1 TBAP/乙腈溶液中,TiO2电极的陷阱态密度依次为3.52 × 1016, 3.18 × 1016和3.37 × 1016 cm-2,陷阱态分布的最大值位于-1.99, -1.89和-1.85 V处. Li+的加入进一步减少了陷阱态密度. 在不含和含有0.2或0.4 mol•L-1TBP的0.2 mol•L-1 LiClO4/乙腈溶液中,TiO2电极的陷阱态密度依次为8.39 × 1015, 1.11 × 1016和9.22 × 1015 cm-2,陷阱态分布的最大值位于-0.72, -0.84和-0.95V处. 最后,研究了N3染料敏化的纳米晶TiO2电极在含有不同浓度TBP的电解质溶液中的光电化学性质. 结果显示,随着TBP浓度的增加,Voc增大,使TiO2电极的光电转化效率增加.

本文引用格式

杨术明 , 王纪超 , 寇慧芝 , 薛洪滨 , 王红军 , 郭玉玲 . 4-叔丁基吡啶对纳米晶TiO2电极的能带结构及光电化学性质的影响[J]. 电化学, 2011 , 17(2) : 204 -211 . DOI: 10.61558/2993-074X.2090

Abstract

The flat band edges (Efb) of nanostructured TiO2 electrodes in electrolyte solutions with tert-butylpyridine (TBP) of different concentrations have been determined with spectroelectrochemical technique. TBP played a role in band energetics of nanostructured TiO2 electrodes. The Efb values of -2.25, -2.46 and -2.62 V were determined in three 0.2 mol•L-1 tetrabutylammonium perchlorate (TBAP) acetonitrile electrolytes which contain 0, 0.2 and 0.4 mol•L-1 TBP respectively. The addition of Li+ ions shifted Efb positively. The Efb values of -1.12, -1.22 and -1.30 V were determined in three 0.2 mol•L-1 LiClO4 acetonitrile electrolytes which contain 0, 0.2 and 0.4 mol•L-1 TBP respectively. The trap state distribution was investigated by the measurements of time resolved current. The total trap state densities of 3.52 × 1016, 3.18 × 1016 and 3.37 × 1016 cm-2 were determined in three 0.2 mol•L-1 TBAP acetonitrile electrolytes which contain 0, 0.2 and 0.4 mol•L-1 TBP respectively with trap distribution maximum located at -1.99, -1.89 and -1.85 V. The addition of Li+ ions further reduced the trap state densities. The total trap state densities of 8.39 × 1015, 1.11 × 1016 and 9.22 × 1015 cm-2 were determined in three 0.2 mol•L-1 LiClO4 acetonitrile electrolytes which contain 0, 0.2 and 0.4 mol•L-1 TBP respectively with trap distribution maximum located at -0.72, -0.84 and -0.95 V. Finally the nanostructured TiO2 electrodes were sensitized with dye N3 and their photoelectrochemical properties were studied in electrolytes with TBP of different concentrations. Experiment results showed that as the concentration of TBP increased, the photoelectric conversion efficiency increased due to improved Voc.

参考文献

[1] O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353: 737-740.

[2] Nazeeruddin M K, Péchy P, Renouard T, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. J Am Chem Soc, 2001, 123 (8): 1613-1624.

[3] Chiba Y, Islam A, Watanabe Y, et al. Dye-sensitized solar cells with conversion efficiency of 11.1% [J]. Jpn J Appl Phys, 2006, 45 (25): 638-640.

[4] Grätzel M. Photoelectrochemical cells [J]. Nature, 2001, 414: 338-344.

[5] Dai S Y, Weng J, Sui Y F, et al. Dye-sensitized solar cells, from cell to module [J]. Solar Energy Materials and Solar Cells, 2004, 84(1-4): 125-133.

[6] Robertson N. Optimizing dyes for dye-sensitized solar cells [J]. Angew Chem Int Ed, 2006, 45 (15): 2338-2345.

[7] Tian H, Meng F. Solar cells based on cyanine and polymethine dyes. Opt Sci Eng, 2005, 99(4): 313-329.

[8] Grätzel M. The advent of mesoscopic injection solar cells [J]. Prog Photovoltaics: 2006, 14 (5): 429-442.

[9] Bach U, Lupo D, Comte P, et al. Solid state dye sensitized cell showing high photon to current conversion efficiencies [J]. Nature, 1998, 395: 583-585.

[10] Gledhill S E, Scott B, Gregg B A. Organic and nano-structured composite photovoltaics: An overview [J]. J Mater Res, 2005, 20 (12): 3167-3179.

[11] Gorlov M, Kloo L. Ionic liquid electrolytes for dye-sensitized solar cells [J]. Dalton Trans, 2008, 20: 2655-2666.

[12] Chervakov O V, Burmistr M V, Sverdlikovs’ka O S, et al. Ionic liquids for promising ion-conducting polymer materials of electrochemical devices [J]. Polimernii Zhurnal, 2008, 30 (1): 5-13.

[13] Lenzmann F, Krueger J, Burnside S, et al. Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5 and SrTiO3 Nanocrystalline Photoanodes: Indication for Electron Injection from Higher Excited Dye States [J]. J Phys Chem B, 2001, 105 (27): 6347-6352.

[14] Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes [M]. New York: Plenum Press, 1980.

[15] Finklea H O. Semiconductor Electrodes [M]. Amsterdam: Elsevier, 1988.

[16] Huang S Y, Schlichthörl G, Nozik A J, et al. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells [J]. J Phys Chem B, 1997, 101 (14): 2576-2582.

[17] Wang P, Zakeeruddin S M, Exnar I, et al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte [J]. Chem Commun, 2002, (24): 2972-2973.

[18] Kohle O, Grätzel M, Meyer A F, et al. The photovoltaic stability of bis(isothocyanato) ruthenium(II)-bis-2,2’-bipyridine-4,4’-dicarboxylic acid and related sensitizers [J]. Adv Mater, 1997, 9 (11): 904-906.

[19] Kelly C A, Farzad F, Thompson D W, et al. Cation-controlled interfacial charge injection in sensitized nanocrystalline TiO2 [J]. Langmuir, 1999, 15 (20): 7047-7054.

[20] Schlichthorl G, Huang S Y, Sprague J, et al. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy [J]. J Phys Chem B, 1997, 101 (41): 8141-8155.

[21] Liu C, Bard A. A charge-induced absorption-edge shift in cadmium sulfide semiconductor films [J]. J Phys Chem, 1989, 93 (23): 7749-7750.

[22] Redmond G, Fitzmaurice D. Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents [J]. J Phys Chem, 1993, 97 (3): 1426-1430.

[23] Wang H, He J, Boschloo G, et al. Electrochemical investigation of traps in a nanostructured TiO2 Film [J]. J Phys Chem B, 2001, 105 (13): 2529-2533.

[24] Redmond G, Grätzel M, Fitzmaurice D. Effect of surface chelation on the energy of an intraband surface state of a nanocrystalline titania film [J]. J Phys Chem, 1993, 97 (27): 6951-6954.

[25] Enright B, Redmond G, Fitzmaurice D. Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in mixed solvent systems [J]. J Phys Chem, 1994, 98 (24): 6195-6200.

[26] Yang S M, Kou H Z, Wang H J, et al. Preparation and band energetics of transparent nanostructured SrTiO3 film electrodes [J]. J Phys Chem C, 2010, 114 (2): 815-819.

[27] Yang S M, Kou H Z, Wang J C. Tunability of the Band Energetics of Nanostructured SrTiO3 Electrodes for Dye-Sensitized Solar Cells [J]. J Phys Chem C, 2010, 114 (9): 4245-4249.

[28] Nazeeruddin M K, Kay A, Grätzel M. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J]. J Am. Chem Soc, 1993, 115 (14): 6382-6390.

[29] Ito S, Murakami T N, Comte P, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10% [J]. Thin Solid Films, 2008, 516 (14): 4613-4619.

[30] Yang S M, Kou H Z, Wang H J, et al. The photoelectrochemical properties of N3 sensitized CaTiO3 modified TiO2 nanocrystalline electrodes [J]. Electrochimica Acta, 2009, 55 (1): 305-310.

[31] Yang S M, Kou H Z, Wang H J, et al. The enhanced photoelectric conversion efficiency of N3 sensitized MgTiO3 modified nanoporous TiO2 electrodes [J]. Colloids Surf A, 2009, 340 (1-3):182-186.

[32] Katoh R, Furube A, Kasuya M, et al. Photoinduced electron injection in black-dye-sensitized nanocrystalline TiO2 films [J]. J Mater Chem, 2007, 17 (30): 3190-3196.

[33] Ooi K, Miyai Y, Sakakihara J. Mechanism of lithium(1+) insertion in spinel-type manganese oxide. Redox and ion-exchange reactions [J]. Lmgmuir, 1991, 7 (6): 1167-1171.

[34] O’Regan B, Moser J, Anderson M, et al. Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation [J]. J Phys Chem, 1990, 94 (24): 8720-8726.

[35] Yum J H, Nakade S, Kim D Y, et al. Improved performance in dye-sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides [J]. J Phys Chem B, 2006, 110 (7): 3215-3219.

[36] Niinobe D, Makari Y, Kitamura T, et al. Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells [J]. J Phys Chem B, 2005, 109 (38): 17892-17900.

[37] Rosenbluth M L, Lewis N S. ‘Ideal’ behavior of the open circuit voltage of semiconductor/liquid junctions [J]. J. Phys. Chem, 1989, 93 (9): 3735-3740.
文章导航

/