欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

KOH和K3[Fe(CN) 6]混合液中颗粒孔径对NiO电极电容器性能的影响

  • 吴雯 ,
  • 侯孟炎 ,
  • 周丹丹 ,
  • 夏永姚
展开
  • 复旦大学 化学系,上海市分子催化和功能材料重点实验室,上海200433

收稿日期: 2010-12-02

  修回日期: 2011-01-28

  网络出版日期: 2011-05-06

基金资助

国家自然科学基金重点项目(20633040)和上海市科委(08DZ2270500)

Effect of Pore Size on Pseudo-Capacitive Performance of NiO in the Mixed Electrolyte of KOH and Hexacyanoferrate

  • WU Wen ,
  • HOU Meng-Yan ,
  • ZHOU Dan-Dan ,
  • XIA Yong-Yao
Expand
  • Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China

Received date: 2010-12-02

  Revised date: 2011-01-28

  Online published: 2011-05-06

摘要

合成5种孔径大小分布的NiO样品,测定各NiO电极在3mol/L KOH或其添加K3[Fe(CN)6]的电解液中的电化学电容性能.结果表明,NiO电极孔径分布在15nm左右,可有效减慢铁氰酸根离子向液相的扩散,从而提高N4 (NiO)电极的充放电效率.

本文引用格式

吴雯 , 侯孟炎 , 周丹丹 , 夏永姚 . KOH和K3[Fe(CN) 6]混合液中颗粒孔径对NiO电极电容器性能的影响[J]. 电化学, 2011 , 17(2) : 169 -174 . DOI: 10.61558/2993-074X.2085

Abstract

In this paper, five kinds of NiO samples with different pore size distributions were synthesized .The electrochemical capacitance of the samples were characterized in 3 mol/L KOH solution with and without hexacyanoferrate addition. Electrochemical test results indicated the NiO sample with an optimum pore size of about 15 nm shows high Coulombic efficiency of the N4(NiO) electrode as the redox reaction of hexacyanoferrate ions would be limited in the pore, thus prevent ion diffusion into the bulk electrolyte solution .

参考文献

[1] Conway B E. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage [J]. J Electrochem Soc ,1991,138 (6): 1539-1548.

[2] Conway B E. Electrochemical super capacitors [M]. New York:Kluwer Academic/Plenum Publishers, 1999.

[3] Sugimoto Wataru, Iwata Hideki, Yasunaga Yutaka, et al. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage[J]. Angewandte Chemie International Edition, 2003,42(34): 4092–4096.

[4] Ishikawa Masashi, M. Masayuki, Ihara Mitsuo, et al. Electric double-layer capacitor composed of activated carbon fiber cloth electrodes and solid polymer electrolytes containing alkylammonium salts [J].J Electrochem Soc, 1994,141 (7): 1730-1734.

[5] Mayer S T, Pekala R W, Pekala J L,et al. The aerocapacitor: an electrochemical double-layer energy-storage device [J].J Electrochem Soc, 1993,140 (2) : 446-451.

[6] Rudge Andy, Davey John, Raistrick Ian, et al. Conducting polymers as active materials in electrochemical capacitors [J]. J Power Source, 1994,47(1/2): 89-107.

[7] Rudge Andy, I Raistrick an, S Gottesfeld himshon. A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors [J]. Electrochim Acta, 1994,39 (2): 273-287.

[8] Zheng J P, Jow T R. A new charge storage mechanism for electrochemical capacitors [J]. J Electrochem Soc , 1995,142 (1): L6-L8.

[9] Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors [J].J Electrochem Soc , 1995,142 (8): 2699-2703.

[10] Liu Kuo-Chuan, Anderson Marc A. Porous nickel oxide/nickel films for electrochemical capacitors [J].J Electrochem Soc, 1996,143 (1): 124-130.

[11] Srinivasan Venkat, Weidner John W. An electrochemical route for making porous nickel oxide electrochemical capacitors [J].J Electrochem Soc ,1997,144 (8): L210-L213.

[12] Srinivasan Venkat, Weidner John W. Studies on the capacitance of nickel oxide films: effect of heating temperature and electrolyte concentration [J]. J Electrochem Soc, 2000,147 (3): 880-885.

[13] Wang Yong-gang, Zhang Xiao-gang. Enhanced electrochemical capacitance of NiO loaded on TiO2 nanotubes [J]. J Electrochem Soc , 2005,152 (4): A671-A676.

[14] Lin Chuan, Ritterand James A, Popov Branko N. Characterization of Sol-gel-derived cobalt oxide xerogels as electrochemical capacitors [J]. J Electrochem Soc , 1998,145 (12): 4097-4103.

[15] Su Ling-Hao, Zhang Xiao-Gang, Mi Chang-Huan et al. Improvement of the capacitive performances for Co–Al layered double hydroxide by adding hexacyanoferrate into the electrolyte [J]. Phys Chem Chem Phys ,2009,11: 2195-2202.

[16] Liu Xian-Ming, Zhang Xiao-Gang, Fu Shao-Yun. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors [J]. Materials Research Bulletin, 2006, 41(3): 620-627.

[17] Wang Y G, Xia Y Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15 [J]. Electrochimica Acta, 2006,51(16): 3223-3227.

[18] Wang Da-Wei, Li Feng, Cheng Hui-Ming. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor [J]. J Power Sources, 2008, 185(2): 1563-1568.

[19] Yan Hongwei, Blanford Christopher F, Holland Brian T,et al. A chemical synthesis of periodic macroporous NiO and metallic Ni [J]. Adv Mater, 1999, 11(12): 1003–1006.

[20] Yan Hongwei, Blanford Christopher F, Holland Brian T,et al. General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion [J]. Chem Mater , 2000, 12 (4): 1134-1141.
文章导航

/